Y. Bubeev, B. Vladimirskiy, I. Ushakov, V. Usov, A. Bogomolov
{"title":"Mathematical Modelling of Spread COVID-19 Epidemic for Preventive Measures to Protect Life and Health of Elderly","authors":"Y. Bubeev, B. Vladimirskiy, I. Ushakov, V. Usov, A. Bogomolov","doi":"10.14529/mmp210307","DOIUrl":null,"url":null,"abstract":"Quantitative approaches based on mathematical modelling are used to justify a set of measures aimed at justifying a set of preventive measures to protect the life and health of older people in the context of COVID-19 pandemic. Analysis of the state of development of actuarial mathematical models of mortality in the COVID-19 epidemic shows the need to construct models that reflect the dynamics of the studied ratios of infection rates, morbidity, recovery and mortality in the dynamics of the pandemic, taking into account the influence of external factors on this process. Most of the known mathematical models for predicting the spread and consequences of COVID-19 are compartmental models that implement sequential transitions between states with the allocation of groups of individuals with different affiliation to the progression/decline of the spread of infection. To compensate for the shortcomings of the compartmental models due to the assumption of population homogeneity and the lack of adequate approaches to the scalability of the simulation results, models based on the Monte Carlo method and the concept of multi- agent systems are used. The development of modelling methods is associated with the need to expand information support for healthcare professionals and health care organizers with the possibility of online configuration of parameters of mathematical models and the use of data from 3/4 cloud services with visualization of the results of modelling.","PeriodicalId":44106,"journal":{"name":"Bulletin of the South Ural State University Series-Mathematical Modelling Programming & Computer Software","volume":null,"pages":null},"PeriodicalIF":0.2000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the South Ural State University Series-Mathematical Modelling Programming & Computer Software","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14529/mmp210307","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Quantitative approaches based on mathematical modelling are used to justify a set of measures aimed at justifying a set of preventive measures to protect the life and health of older people in the context of COVID-19 pandemic. Analysis of the state of development of actuarial mathematical models of mortality in the COVID-19 epidemic shows the need to construct models that reflect the dynamics of the studied ratios of infection rates, morbidity, recovery and mortality in the dynamics of the pandemic, taking into account the influence of external factors on this process. Most of the known mathematical models for predicting the spread and consequences of COVID-19 are compartmental models that implement sequential transitions between states with the allocation of groups of individuals with different affiliation to the progression/decline of the spread of infection. To compensate for the shortcomings of the compartmental models due to the assumption of population homogeneity and the lack of adequate approaches to the scalability of the simulation results, models based on the Monte Carlo method and the concept of multi- agent systems are used. The development of modelling methods is associated with the need to expand information support for healthcare professionals and health care organizers with the possibility of online configuration of parameters of mathematical models and the use of data from 3/4 cloud services with visualization of the results of modelling.
期刊介绍:
Series «Mathematical Modelling, Programming & Computer Software» of the South Ural State University Bulletin was created in 2008. Nowadays it is published four times a year. The basic goal of the editorial board as well as the editorial commission of series «Mathematical Modelling, Programming & Computer Software» is research promotion in the sphere of mathematical modelling in natural, engineering and economic science. Priority publication right is given to: -the results of high-quality research of mathematical models, revealing less obvious properties; -the results of computational research, containing designs of new computational algorithms relating to mathematical models; -program systems, designed for computational experiments.