Dynamic Vehicle Data Gathering via Deep Reinforcement Learning Approach

Jun Li, Zhichao Xing, Sha Wei, Yuwen Qian, Weibin Zhang
{"title":"Dynamic Vehicle Data Gathering via Deep Reinforcement Learning Approach","authors":"Jun Li, Zhichao Xing, Sha Wei, Yuwen Qian, Weibin Zhang","doi":"10.1109/ICCC47050.2019.9064339","DOIUrl":null,"url":null,"abstract":"With the rapid development of vehicular ad hoc networks (VANETs), there have been numerous efforts to big data and analysis of vehicle information for roadside intelligence. However, continuous data gathering is energy consuming and eventually causes data backlog due to the capacity-limited backhaul links, while sparse gathering frequency may miss the timely detection of critical traffic information. Therefore, this paper focus on the dynamic data gathering problem in vehicular networks. In the scenario with environment changes dynamically, we first model the problem as a Markov decision process (MDP), and then propose different deep reinforcement learning(DRL) based maximization frequency matching algorithms, to determine the optimal gathering frequency at each time. The simulation results compare the performance differences of the algorithms, and show the trend of frequency matching in different storage spaces.","PeriodicalId":6739,"journal":{"name":"2019 IEEE 5th International Conference on Computer and Communications (ICCC)","volume":"293 1","pages":"1916-1920"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 5th International Conference on Computer and Communications (ICCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCC47050.2019.9064339","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

With the rapid development of vehicular ad hoc networks (VANETs), there have been numerous efforts to big data and analysis of vehicle information for roadside intelligence. However, continuous data gathering is energy consuming and eventually causes data backlog due to the capacity-limited backhaul links, while sparse gathering frequency may miss the timely detection of critical traffic information. Therefore, this paper focus on the dynamic data gathering problem in vehicular networks. In the scenario with environment changes dynamically, we first model the problem as a Markov decision process (MDP), and then propose different deep reinforcement learning(DRL) based maximization frequency matching algorithms, to determine the optimal gathering frequency at each time. The simulation results compare the performance differences of the algorithms, and show the trend of frequency matching in different storage spaces.
基于深度强化学习方法的动态车辆数据采集
随着车载自组织网络(VANETs)的快速发展,人们对车辆信息的大数据和分析进行了大量的研究,以实现路边智能。但是,连续的数据采集消耗大量的能量,最终由于回程链路容量有限导致数据积压,而稀疏的采集频率可能无法及时发现关键的交通信息。因此,本文主要研究车载网络中的动态数据采集问题。在环境动态变化的情况下,首先将问题建模为马尔可夫决策过程(MDP),然后提出不同的基于深度强化学习(DRL)的最大频率匹配算法,确定每次的最优采集频率。仿真结果比较了各算法的性能差异,并给出了不同存储空间下频率匹配的趋势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信