{"title":"Comparison of cell performance of ZnS(O,OH)/CIGS solar cells with UV-assisted MOCVD-ZnO:B and sputter-deposited ZnO:Al window layers","authors":"Taizou Kobayashi, K. Yamauchi, T. Nakada","doi":"10.1109/pvsc-vol2.2013.6656753","DOIUrl":null,"url":null,"abstract":"ZnO:B films deposited by ultraviolet light-assisted metal organic chemical vapor deposition (UM-ZnO:B) were applied to CBD-ZnS(O,OH)/CIGS solar cells in order to eliminate plasma damages during the subsequent ZnO sputtering. It was verified that the conversion efficiency of CIGS solar cells with a UM-ZnO:B window layer was higher than that of the device with a sputter-deposited(Sp-) ZnO:Al window layer; in both cases, thick (120 nm) and thin (10 nm) ZnS(O,OH) buffer layers were used. The conversion efficiency of CIGS solar cell was improved from 16.3% to 17.5% upon replacement of the Sp-ZnO:Al by a UM-ZnO:B window layer when the thick ZnS(O,OH) (120nm) buffer layer was used. Notably, the conversion efficiency was remarkably improved from 0.2% to 15.6% by the replacement of the window layer even when the ultra thin ZnS(O,OH) (10nm) buffer layer was used. The temperature dependence of open-circuit voltage revealed that interface recombination decreased owing to the use of a UM-ZnO: B window layer.","PeriodicalId":6420,"journal":{"name":"2012 IEEE 38th Photovoltaic Specialists Conference (PVSC) PART 2","volume":"36 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2013-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 38th Photovoltaic Specialists Conference (PVSC) PART 2","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/pvsc-vol2.2013.6656753","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
ZnO:B films deposited by ultraviolet light-assisted metal organic chemical vapor deposition (UM-ZnO:B) were applied to CBD-ZnS(O,OH)/CIGS solar cells in order to eliminate plasma damages during the subsequent ZnO sputtering. It was verified that the conversion efficiency of CIGS solar cells with a UM-ZnO:B window layer was higher than that of the device with a sputter-deposited(Sp-) ZnO:Al window layer; in both cases, thick (120 nm) and thin (10 nm) ZnS(O,OH) buffer layers were used. The conversion efficiency of CIGS solar cell was improved from 16.3% to 17.5% upon replacement of the Sp-ZnO:Al by a UM-ZnO:B window layer when the thick ZnS(O,OH) (120nm) buffer layer was used. Notably, the conversion efficiency was remarkably improved from 0.2% to 15.6% by the replacement of the window layer even when the ultra thin ZnS(O,OH) (10nm) buffer layer was used. The temperature dependence of open-circuit voltage revealed that interface recombination decreased owing to the use of a UM-ZnO: B window layer.