User Activity And Data Detection For MIMO Uplink C-RAN Using Bayesian Learning

Anupama Rajoriya, Vidushi Katiyar, Rohit Budhiraja
{"title":"User Activity And Data Detection For MIMO Uplink C-RAN Using Bayesian Learning","authors":"Anupama Rajoriya, Vidushi Katiyar, Rohit Budhiraja","doi":"10.23919/Eusipco47968.2020.9287867","DOIUrl":null,"url":null,"abstract":"We investigate user activity and data detection problem in a multiple-input multiple-output uplink cloud-radio access network, where the data matrix over a time-frame has overlapped burst sparsity due to sporadic user activity. We exploit this sparsity to recover data by proposing a weighted prior-sparse Bayesian learning algorithm. The proposed algorithm, due to carefully selected prior, captures not only the overlapped burst sparsity across time but also the block sparsity due to multi-user antennas. We also derive hyperparameter updates, and estimate the weight parameters using the support estimated via index-wise log-likelihood ratio test. We numerically demonstrate that the proposed algorithm has much lower bit error rate than the state-of-the-art competing algorithms.","PeriodicalId":6705,"journal":{"name":"2020 28th European Signal Processing Conference (EUSIPCO)","volume":"21 1","pages":"1742-1746"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 28th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/Eusipco47968.2020.9287867","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We investigate user activity and data detection problem in a multiple-input multiple-output uplink cloud-radio access network, where the data matrix over a time-frame has overlapped burst sparsity due to sporadic user activity. We exploit this sparsity to recover data by proposing a weighted prior-sparse Bayesian learning algorithm. The proposed algorithm, due to carefully selected prior, captures not only the overlapped burst sparsity across time but also the block sparsity due to multi-user antennas. We also derive hyperparameter updates, and estimate the weight parameters using the support estimated via index-wise log-likelihood ratio test. We numerically demonstrate that the proposed algorithm has much lower bit error rate than the state-of-the-art competing algorithms.
基于贝叶斯学习的MIMO上行链路C-RAN用户活动和数据检测
我们研究了多输入多输出上行云无线接入网络中的用户活动和数据检测问题,其中数据矩阵在一个时间框架内由于零星的用户活动而重叠突发稀疏性。我们通过提出一种加权先验-稀疏贝叶斯学习算法来利用这种稀疏性来恢复数据。该算法通过对先验条件的仔细选择,既能捕获重叠突发稀疏度,又能捕获多用户天线引起的块稀疏度。我们还推导了超参数更新,并使用通过索引对数似然比检验估计的支持度来估计权重参数。数值结果表明,该算法具有较低的误码率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信