{"title":"A Comparison of Landau-Ginzburg Models for Odd Dimensional Quadrics","authors":"C. Pech, K. Rietsch","doi":"10.21915/BIMAS.2018301","DOIUrl":null,"url":null,"abstract":"In [Rie08], the second author dened a Landau-Ginzburg model for homogeneous spaces G=P , as a regular function on an ane subvariety of the Langlands dual group. In this paper, we reformulate this LG model in the case of the odd-dimensional quadric Q2m 1 as a regular function Wt on the complement X of a particular anticanonical divisor in the projective space P 2m = P(H (Q2m 1;C) ). In fact, we express Wt in","PeriodicalId":43960,"journal":{"name":"Bulletin of the Institute of Mathematics Academia Sinica New Series","volume":"41 1","pages":""},"PeriodicalIF":0.1000,"publicationDate":"2013-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Institute of Mathematics Academia Sinica New Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21915/BIMAS.2018301","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In [Rie08], the second author dened a Landau-Ginzburg model for homogeneous spaces G=P , as a regular function on an ane subvariety of the Langlands dual group. In this paper, we reformulate this LG model in the case of the odd-dimensional quadric Q2m 1 as a regular function Wt on the complement X of a particular anticanonical divisor in the projective space P 2m = P(H (Q2m 1;C) ). In fact, we express Wt in