{"title":"Evaluation of Feedback and Feedforward Coupling of Synthetic Aperture Navigation with LTE Signals","authors":"Ali A. Abdallah, Z. Kassas","doi":"10.1109/VTCFall.2019.8891521","DOIUrl":null,"url":null,"abstract":"An indoor pedestrian localization system which is based on cellular long-term evolution (LTE) carrier phase measurements and synthetic aperture navigation (SAN) is developed. The proposed system relies on a moving antenna array to determine the direction-of-arrival (DOA) of received LTE signals, while suppressing multipath signals. Two schemes are studied to couple LTE carrier phase measurements with SAN: (1) feedforward LTE-SAN and (2) feedback LTE-SAN. The performance of both coupling schemes is validated experimentally in a challenging indoor environment, in which the proposed system traversed a distance of 126.8 m in 100 seconds, while receiving LTE signals from 6 eNodeBs. The position root mean-squared error (RMSE) exhibited by the proposed LTE-SAN approach was 5.20 m and 4.32 m with feedforward and feedback coupling, respectively, compared with 7.19 m using a standalone LTE approach.","PeriodicalId":6713,"journal":{"name":"2019 IEEE 90th Vehicular Technology Conference (VTC2019-Fall)","volume":"36 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 90th Vehicular Technology Conference (VTC2019-Fall)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VTCFall.2019.8891521","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11
Abstract
An indoor pedestrian localization system which is based on cellular long-term evolution (LTE) carrier phase measurements and synthetic aperture navigation (SAN) is developed. The proposed system relies on a moving antenna array to determine the direction-of-arrival (DOA) of received LTE signals, while suppressing multipath signals. Two schemes are studied to couple LTE carrier phase measurements with SAN: (1) feedforward LTE-SAN and (2) feedback LTE-SAN. The performance of both coupling schemes is validated experimentally in a challenging indoor environment, in which the proposed system traversed a distance of 126.8 m in 100 seconds, while receiving LTE signals from 6 eNodeBs. The position root mean-squared error (RMSE) exhibited by the proposed LTE-SAN approach was 5.20 m and 4.32 m with feedforward and feedback coupling, respectively, compared with 7.19 m using a standalone LTE approach.