An efficient deep learning-based approach for human activity recognition using smartphone inertial sensors

Q2 Computer Science
R. Djemili, Merouane Zamouche
{"title":"An efficient deep learning-based approach for human activity recognition using smartphone inertial sensors","authors":"R. Djemili, Merouane Zamouche","doi":"10.1080/1206212X.2023.2198785","DOIUrl":null,"url":null,"abstract":"Human activity recognition (HAR) has recently witnessed outstanding growth in health and entertainment applications. Owing to the availability of smartphones, many new methods and protocols for using the data from smartphones’ embedded sensors are emerging. Nonetheless, the methods carried out and published in the literature leave a wide area for improvement, in terms of accuracy, resource economy, and adaptation to real-world nuisances. On top of that, a novel classification method that is more economical and efficient is proposed in this paper using both 1D convolutional neural network (1D-CNN) parameters and handcrafted temporal and frequency features with the proficiency of a multilayer perceptron neural network (MLP) classifier. The method proposed requires only tri-axial accelerometer data, allowing it to be deployed even into lower equipment devices; it was tested within the two well-known benchmark datasets: UCI-HAR and Uni-MIB SHAR. Experimental results yield a classification accuracy exceeding 99%, outperforming many of the methods recently shown in the literature.","PeriodicalId":39673,"journal":{"name":"International Journal of Computers and Applications","volume":"5 1","pages":"323 - 336"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computers and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/1206212X.2023.2198785","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

Abstract

Human activity recognition (HAR) has recently witnessed outstanding growth in health and entertainment applications. Owing to the availability of smartphones, many new methods and protocols for using the data from smartphones’ embedded sensors are emerging. Nonetheless, the methods carried out and published in the literature leave a wide area for improvement, in terms of accuracy, resource economy, and adaptation to real-world nuisances. On top of that, a novel classification method that is more economical and efficient is proposed in this paper using both 1D convolutional neural network (1D-CNN) parameters and handcrafted temporal and frequency features with the proficiency of a multilayer perceptron neural network (MLP) classifier. The method proposed requires only tri-axial accelerometer data, allowing it to be deployed even into lower equipment devices; it was tested within the two well-known benchmark datasets: UCI-HAR and Uni-MIB SHAR. Experimental results yield a classification accuracy exceeding 99%, outperforming many of the methods recently shown in the literature.
一种基于深度学习的智能手机惯性传感器人体活动识别方法
人类活动识别(HAR)最近在健康和娱乐应用中取得了显著的增长。由于智能手机的可用性,许多使用智能手机嵌入式传感器数据的新方法和协议正在出现。尽管如此,在准确性、资源经济性和对现实世界滋扰的适应性方面,文献中实施和发表的方法仍有很大的改进空间。在此基础上,利用一维卷积神经网络(1D- cnn)参数和多层感知器神经网络(MLP)分类器的熟练程度,手工制作时间和频率特征,提出了一种更经济高效的分类方法。所提出的方法只需要三轴加速度计数据,甚至可以部署到较低的设备设备中;它在两个著名的基准数据集中进行了测试:UCI-HAR和Uni-MIB SHAR。实验结果产生的分类精度超过99%,优于最近在文献中显示的许多方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Computers and Applications
International Journal of Computers and Applications Computer Science-Computer Graphics and Computer-Aided Design
CiteScore
4.70
自引率
0.00%
发文量
20
期刊介绍: The International Journal of Computers and Applications (IJCA) is a unique platform for publishing novel ideas, research outcomes and fundamental advances in all aspects of Computer Science, Computer Engineering, and Computer Applications. This is a peer-reviewed international journal with a vision to provide the academic and industrial community a platform for presenting original research ideas and applications. IJCA welcomes four special types of papers in addition to the regular research papers within its scope: (a) Papers for which all results could be easily reproducible. For such papers, the authors will be asked to upload "instructions for reproduction'''', possibly with the source codes or stable URLs (from where the codes could be downloaded). (b) Papers with negative results. For such papers, the experimental setting and negative results must be presented in detail. Also, why the negative results are important for the research community must be explained clearly. The rationale behind this kind of paper is that this would help researchers choose the correct approaches to solve problems and avoid the (already worked out) failed approaches. (c) Detailed report, case study and literature review articles about innovative software / hardware, new technology, high impact computer applications and future development with sufficient background and subject coverage. (d) Special issue papers focussing on a particular theme with significant importance or papers selected from a relevant conference with sufficient improvement and new material to differentiate from the papers published in a conference proceedings.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信