The a-average Degree Edge-Connectivity of Bijective Connection Networks

Yayu Yang, Mingzu Zhang, J. Meng, Rongda Chen
{"title":"The a-average Degree Edge-Connectivity of Bijective Connection Networks","authors":"Yayu Yang, Mingzu Zhang, J. Meng, Rongda Chen","doi":"10.1093/comjnl/bxac064","DOIUrl":null,"url":null,"abstract":"\n The conditional edge-connectivity is an important parameter to evaluate the reliability and fault tolerance of multi-processor systems. The $n$-dimensional bijective connection networks $B_{n}$ contain hypercubes, crossed cubes, Möbius cubes and twisted cubes, etc. The conditional edge-connectivity of a connected graph $G$ is the minimum cardinality of edge sets, whose deletion disconnects $G$ and results in each remaining component satisfying property $\\mathscr{P}$. And let $F$ be the edge set as desired. For a positive integer $a$, if $\\mathscr{P}$ denotes the property that the average degree of each component of $G-F$ is no less than $a$, then the conditional edge-connectivity can be called the $a$-average degree edge-connectivity $\\overline{\\lambda }_{a}(G)$. In this paper, we determine that the exact value of the $a$-average degree edge-connectivity of an $n$-dimensional bijective connection network $\\overline{\\lambda }_{a}(B_{n})$ is $(n-a)2^a$ for each $0\\leq a \\leq n-1 $ and $n\\geq 1$. 1","PeriodicalId":21872,"journal":{"name":"South Afr. Comput. J.","volume":"34 1","pages":"2118-2122"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"South Afr. Comput. J.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/comjnl/bxac064","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The conditional edge-connectivity is an important parameter to evaluate the reliability and fault tolerance of multi-processor systems. The $n$-dimensional bijective connection networks $B_{n}$ contain hypercubes, crossed cubes, Möbius cubes and twisted cubes, etc. The conditional edge-connectivity of a connected graph $G$ is the minimum cardinality of edge sets, whose deletion disconnects $G$ and results in each remaining component satisfying property $\mathscr{P}$. And let $F$ be the edge set as desired. For a positive integer $a$, if $\mathscr{P}$ denotes the property that the average degree of each component of $G-F$ is no less than $a$, then the conditional edge-connectivity can be called the $a$-average degree edge-connectivity $\overline{\lambda }_{a}(G)$. In this paper, we determine that the exact value of the $a$-average degree edge-connectivity of an $n$-dimensional bijective connection network $\overline{\lambda }_{a}(B_{n})$ is $(n-a)2^a$ for each $0\leq a \leq n-1 $ and $n\geq 1$. 1
双射连接网络的a-平均度边连通性
条件边连通性是评价多处理器系统可靠性和容错性的重要参数。$n$维双射连接网络$B_{n}$包含超立方体、交叉立方体、Möbius立方体和扭曲立方体等。连通图$G$的条件边连通性是边集的最小基数,删除边集断开$G$并导致每个剩余组件满足属性$\mathscr{P}$。设$F$为所需的边集。对于正整数$a$,如果$\mathscr{P}$表示$G-F$各分量的平均度不小于$a$的性质,则该条件边连通性可称为$a$ -平均度边连通性$\overline{\lambda }_{a}(G)$。在本文中,我们确定了$n$维双射连接网络$\overline{\lambda }_{a}(B_{n})$对每个$0\leq a \leq n-1 $和$n\geq 1$的$a$ -平均度边连通性的确切值为$(n-a)2^a$。1
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信