O. garcia-lievanos, E. Terán-Bobadilla, Luis A Hernandez-Flores, Leticia Sanchez-Gonzalez
{"title":"Contact lens design to third order to compensate the spherical aberration of the eye from Zernike polynomials","authors":"O. garcia-lievanos, E. Terán-Bobadilla, Luis A Hernandez-Flores, Leticia Sanchez-Gonzalez","doi":"10.1117/12.2526476","DOIUrl":null,"url":null,"abstract":"To compensate the spherical aberration of the eye using the conic constant of the first surface of a contact lens for different refractive errors. Refractive errors were simulated by modifying only the first curvature of the cornea. For every refractive error was calculating Zernike polynomials using Optics Software for Layout and Optimization (OSLO) EDU edition with and without contact lens. To calculate the conic constant of the contact lens we use the Seidel sums for thin lenses from the longitudinal spherical aberration as it proposes V. Mahajan. The value of Zernike spherical aberration coefficient for the eye with farsightedness (+ 5.00 D) + spherical contact lens was 0.142691 μm. The conic constant value to compensate the spherical aberration was -0.222995 and the value of Zernike spherical aberration coefficient of the eye + aspherical contact lens was 0.004354 μm. The value of Zernike spherical aberration coefficient for the eye with myopia (- 5.00 D) + spherical contact lens was 0.144505 μm. The conic constant value to compensate the spherical aberration was -0.101424 and the value of Zernike spherical aberration coefficient of the eye + aspherical contact lens was 0.072820 μm. The proposed method allows us to design contact lenses that compensate for the spherical aberration of the eye from the Zernike polynomials. Although the design of contact lenses is to third order, we obtain a smaller spherical aberration than the chromatic aberration on the axis without use optimization routine.","PeriodicalId":10843,"journal":{"name":"Current Developments in Lens Design and Optical Engineering XX","volume":"40 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Developments in Lens Design and Optical Engineering XX","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2526476","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
To compensate the spherical aberration of the eye using the conic constant of the first surface of a contact lens for different refractive errors. Refractive errors were simulated by modifying only the first curvature of the cornea. For every refractive error was calculating Zernike polynomials using Optics Software for Layout and Optimization (OSLO) EDU edition with and without contact lens. To calculate the conic constant of the contact lens we use the Seidel sums for thin lenses from the longitudinal spherical aberration as it proposes V. Mahajan. The value of Zernike spherical aberration coefficient for the eye with farsightedness (+ 5.00 D) + spherical contact lens was 0.142691 μm. The conic constant value to compensate the spherical aberration was -0.222995 and the value of Zernike spherical aberration coefficient of the eye + aspherical contact lens was 0.004354 μm. The value of Zernike spherical aberration coefficient for the eye with myopia (- 5.00 D) + spherical contact lens was 0.144505 μm. The conic constant value to compensate the spherical aberration was -0.101424 and the value of Zernike spherical aberration coefficient of the eye + aspherical contact lens was 0.072820 μm. The proposed method allows us to design contact lenses that compensate for the spherical aberration of the eye from the Zernike polynomials. Although the design of contact lenses is to third order, we obtain a smaller spherical aberration than the chromatic aberration on the axis without use optimization routine.