On the well-posedness of variational-hemivariational inequalities and associated fixed point problems

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
H. Rong, M. Sofonea
{"title":"On the well-posedness of variational-hemivariational inequalities and associated fixed point problems","authors":"H. Rong, M. Sofonea","doi":"10.23952/jnva.6.2022.5.09","DOIUrl":null,"url":null,"abstract":". We consider an elliptic variational-hemivariational inequality P in a p -uniformly smooth Banach space. We prove that the inequality is governed by a multivalued maximal monotone operator, and, for each λ > 0, we use the resolvent of this operator to construct an auxiliary fixed point problem, denoted P λ . Next, we perform a parallel study of problems P and P λ based on their intrinsic equivalence. In this way, we prove existence, uniqueness, and well-posedness results with respect to specific Tykhonov triples. The existence of a unique common solution to problems P and P λ is proved by using the Banach contraction principle in the study of Problem P λ . In contrast, the well-posedness of the problems is obtained by using a monotonicity argument in the study of Problem P . Finally, the properties of Problem P λ allow us to deduce a convergence criterion in the study of Problem P .","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.23952/jnva.6.2022.5.09","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

. We consider an elliptic variational-hemivariational inequality P in a p -uniformly smooth Banach space. We prove that the inequality is governed by a multivalued maximal monotone operator, and, for each λ > 0, we use the resolvent of this operator to construct an auxiliary fixed point problem, denoted P λ . Next, we perform a parallel study of problems P and P λ based on their intrinsic equivalence. In this way, we prove existence, uniqueness, and well-posedness results with respect to specific Tykhonov triples. The existence of a unique common solution to problems P and P λ is proved by using the Banach contraction principle in the study of Problem P λ . In contrast, the well-posedness of the problems is obtained by using a monotonicity argument in the study of Problem P . Finally, the properties of Problem P λ allow us to deduce a convergence criterion in the study of Problem P .
变分-半变分不等式的适定性及其不动点问题
. 考虑P -一致光滑巴拿赫空间中的一个椭圆变分半变不等式P。我们证明了不等式是由一个多值极大单调算子控制的,并且对于每一个λ > 0,我们利用这个算子的解构造了一个辅助不动点问题,记作P λ。接下来,我们基于P和P λ的内在等价性对它们进行平行研究。通过这种方法,我们证明了特定Tykhonov三元组的存在性、唯一性和适定性结果。在研究P λ问题时,利用Banach收缩原理证明了P和P λ问题的唯一公共解的存在性。在P问题的研究中,利用单调性论证得到了问题的适定性。最后,根据问题P λ的性质,我们可以推导出问题P的收敛准则。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信