Extracting multi-dimensional relations: a generative model of groups of entities in a corpus

C. Yeung, Tomoharu Iwata
{"title":"Extracting multi-dimensional relations: a generative model of groups of entities in a corpus","authors":"C. Yeung, Tomoharu Iwata","doi":"10.1145/2063576.2063750","DOIUrl":null,"url":null,"abstract":"Extracting relations among different entities from various data sources has been an important topic in data mining. While many methods focus only on a single type of relations, real world entities maintain relations that contain much richer information. We propose a hierarchical Bayesian model for extracting multi-dimensional relations among entities from a text corpus. Using data from Wikipedia, we show that our model can accurately predict the relevance of an entity given the topic of the document as well as the set of entities that are already mentioned in that document.","PeriodicalId":74507,"journal":{"name":"Proceedings of the ... ACM International Conference on Information & Knowledge Management. ACM International Conference on Information and Knowledge Management","volume":"36 1","pages":"1203-1208"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... ACM International Conference on Information & Knowledge Management. ACM International Conference on Information and Knowledge Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2063576.2063750","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Extracting relations among different entities from various data sources has been an important topic in data mining. While many methods focus only on a single type of relations, real world entities maintain relations that contain much richer information. We propose a hierarchical Bayesian model for extracting multi-dimensional relations among entities from a text corpus. Using data from Wikipedia, we show that our model can accurately predict the relevance of an entity given the topic of the document as well as the set of entities that are already mentioned in that document.
多维关系提取:语料库中实体组的生成模型
从各种数据源中提取不同实体之间的关系一直是数据挖掘中的一个重要课题。虽然许多方法只关注单一类型的关系,但现实世界的实体维护的关系包含更丰富的信息。我们提出了一个层次贝叶斯模型,用于从文本语料库中提取实体之间的多维关系。使用来自Wikipedia的数据,我们证明了我们的模型可以准确地预测给定文档主题的实体的相关性,以及该文档中已经提到的实体集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信