{"title":"Extension of Duality Results and a Dual Simplex Method for Linear Programming Problems With Intuitionistic Fuzzy Variables","authors":"M. Goli, S. H. Nasseri","doi":"10.1080/16168658.2021.1908818","DOIUrl":null,"url":null,"abstract":"The aim of this paper is to introduce a formulation of linear programming problems involving intuitionistic fuzzy variables. Here, we will focus on duality and a simplex-based algorithm for these problems. We classify these problems into two main different categories: linear programming with intuitionistic fuzzy numbers problems and linear programming with intuitionistic fuzzy variables problems. The linear programming with intuitionistic fuzzy numbers problem had been solved in the previous literature, based on this fact we offer a procedure for solving the linear programming with intuitionistic fuzzy variables problems. In methods based on the simplex algorithm, it is not easy to obtain a primal basic feasible solution to the minimization linear programming with intuitionistic fuzzy variables problem with equality constraints and nonnegative variables. Therefore, we propose a dual simplex algorithm to solve these problems. Some fundamental concepts and theoretical results such as basic solution, optimality condition and etc., for linear programming with intuitionistic fuzzy variables problems, are established so far. Moreover, the weak and strong duality theorems for linear programming with intuitionistic fuzzy variables problems are proved. In the end, the computational procedure of the suggested approach is shown by numerical examples.","PeriodicalId":37623,"journal":{"name":"Fuzzy Information and Engineering","volume":"74 1","pages":"392 - 411"},"PeriodicalIF":1.3000,"publicationDate":"2020-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fuzzy Information and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/16168658.2021.1908818","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1
Abstract
The aim of this paper is to introduce a formulation of linear programming problems involving intuitionistic fuzzy variables. Here, we will focus on duality and a simplex-based algorithm for these problems. We classify these problems into two main different categories: linear programming with intuitionistic fuzzy numbers problems and linear programming with intuitionistic fuzzy variables problems. The linear programming with intuitionistic fuzzy numbers problem had been solved in the previous literature, based on this fact we offer a procedure for solving the linear programming with intuitionistic fuzzy variables problems. In methods based on the simplex algorithm, it is not easy to obtain a primal basic feasible solution to the minimization linear programming with intuitionistic fuzzy variables problem with equality constraints and nonnegative variables. Therefore, we propose a dual simplex algorithm to solve these problems. Some fundamental concepts and theoretical results such as basic solution, optimality condition and etc., for linear programming with intuitionistic fuzzy variables problems, are established so far. Moreover, the weak and strong duality theorems for linear programming with intuitionistic fuzzy variables problems are proved. In the end, the computational procedure of the suggested approach is shown by numerical examples.
期刊介绍:
Fuzzy Information and Engineering—An International Journal wants to provide a unified communication platform for researchers in a wide area of topics from pure and applied mathematics, computer science, engineering, and other related fields. While also accepting fundamental work, the journal focuses on applications. Research papers, short communications, and reviews are welcome. Technical topics within the scope include: (1) Fuzzy Information a. Fuzzy information theory and information systems b. Fuzzy clustering and classification c. Fuzzy information processing d. Hardware and software co-design e. Fuzzy computer f. Fuzzy database and data mining g. Fuzzy image processing and pattern recognition h. Fuzzy information granulation i. Knowledge acquisition and representation in fuzzy information (2) Fuzzy Sets and Systems a. Fuzzy sets b. Fuzzy analysis c. Fuzzy topology and fuzzy mapping d. Fuzzy equation e. Fuzzy programming and optimal f. Fuzzy probability and statistic g. Fuzzy logic and algebra h. General systems i. Fuzzy socioeconomic system j. Fuzzy decision support system k. Fuzzy expert system (3) Soft Computing a. Soft computing theory and foundation b. Nerve cell algorithms c. Genetic algorithms d. Fuzzy approximation algorithms e. Computing with words and Quantum computation (4) Fuzzy Engineering a. Fuzzy control b. Fuzzy system engineering c. Fuzzy knowledge engineering d. Fuzzy management engineering e. Fuzzy design f. Fuzzy industrial engineering g. Fuzzy system modeling (5) Fuzzy Operations Research [...] (6) Artificial Intelligence [...] (7) Others [...]