{"title":"Growing uniform planar maps face by face","authors":"Alessandra Caraceni, Alexandre O. Stauffer","doi":"10.1002/rsa.21165","DOIUrl":null,"url":null,"abstract":"We provide “growth schemes” for inductively generating uniform random 2p$$ 2p $$ ‐angulations of the sphere with n$$ n $$ faces, as well as uniform random simple triangulations of the sphere with 2n$$ 2n $$ faces. In the case of 2p$$ 2p $$ ‐angulations, we provide a way to insert a new face at a random location in a uniform 2p$$ 2p $$ ‐angulation with n$$ n $$ faces in such a way that the new map is precisely a uniform 2p$$ 2p $$ ‐angulation with n+1$$ n+1 $$ faces. Similarly, given a uniform simple triangulation of the sphere with 2n$$ 2n $$ faces, we describe a way to insert two new adjacent triangles so as to obtain a uniform simple triangulation of the sphere with 2n+2$$ 2n+2 $$ faces. The latter is based on a new bijective presentation of simple triangulations that relies on a construction by Poulalhon and Schaeffer.","PeriodicalId":54523,"journal":{"name":"Random Structures & Algorithms","volume":"2 1","pages":"942 - 967"},"PeriodicalIF":0.9000,"publicationDate":"2021-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Random Structures & Algorithms","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/rsa.21165","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
We provide “growth schemes” for inductively generating uniform random 2p$$ 2p $$ ‐angulations of the sphere with n$$ n $$ faces, as well as uniform random simple triangulations of the sphere with 2n$$ 2n $$ faces. In the case of 2p$$ 2p $$ ‐angulations, we provide a way to insert a new face at a random location in a uniform 2p$$ 2p $$ ‐angulation with n$$ n $$ faces in such a way that the new map is precisely a uniform 2p$$ 2p $$ ‐angulation with n+1$$ n+1 $$ faces. Similarly, given a uniform simple triangulation of the sphere with 2n$$ 2n $$ faces, we describe a way to insert two new adjacent triangles so as to obtain a uniform simple triangulation of the sphere with 2n+2$$ 2n+2 $$ faces. The latter is based on a new bijective presentation of simple triangulations that relies on a construction by Poulalhon and Schaeffer.
期刊介绍:
It is the aim of this journal to meet two main objectives: to cover the latest research on discrete random structures, and to present applications of such research to problems in combinatorics and computer science. The goal is to provide a natural home for a significant body of current research, and a useful forum for ideas on future studies in randomness.
Results concerning random graphs, hypergraphs, matroids, trees, mappings, permutations, matrices, sets and orders, as well as stochastic graph processes and networks are presented with particular emphasis on the use of probabilistic methods in combinatorics as developed by Paul Erdõs. The journal focuses on probabilistic algorithms, average case analysis of deterministic algorithms, and applications of probabilistic methods to cryptography, data structures, searching and sorting. The journal also devotes space to such areas of probability theory as percolation, random walks and combinatorial aspects of probability.