Elliptic surfaces and intersections of adelic $\mathbb{R}$-divisors

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Laura Demarco, Niki Myrto Mavraki
{"title":"Elliptic surfaces and intersections of adelic $\\mathbb{R}$-divisors","authors":"Laura Demarco, Niki Myrto Mavraki","doi":"10.4171/jems/1354","DOIUrl":null,"url":null,"abstract":"Suppose $\\mathcal{E} \\to B$ is a non-isotrivial elliptic surface defined over a number field, for smooth projective curve $B$. Let $k$ denote the function field $\\overline{\\mathbb{Q}}(B)$ and $E$ the associated elliptic curve over $k$. In this article, we construct adelically metrized $\\mathbb{R}$-divisors $\\overline{D}_X$ on the base curve $B$ over a number field, for each $X \\in E(k)\\otimes \\mathbb{R}$. We prove non-degeneracy of the Arakelov-Zhang intersection numbers $\\overline{D}_X\\cdot \\overline{D}_Y$, as a biquadratic form on $E(k)\\otimes \\mathbb{R}$. As a consequence, we have the following Bogomolov-type statement for the N\\'eron-Tate height functions on the fibers $E_t(\\overline{\\mathbb{Q}})$ of $\\mathcal{E}$ over $t \\in B(\\overline{\\mathbb{Q}})$: given points $P_1, \\ldots, P_m \\in E(k)$ with $m\\geq 2$, there exist an infinite sequence $t_n\\in B(\\overline{\\mathbb{Q}})$ and small-height perturbations $P_{i,t_n}' \\in E_{t_n}(\\overline{\\mathbb{Q}})$ of specializations $P_{i,t_n}$ so that the set $\\{P_{1, t_n}', \\ldots, P_{m,t_n}'\\}$ satisfies at least two independent linear relations for all $n$, if and only if the points $P_1, \\ldots, P_m$ are linearly dependent in $E(k)$. This gives a new proof of results of Masser and Zannier and of Barroero and Capuano and extends our earlier results. In the Appendix, we prove an equidistribution theorem for adelically metrized $\\mathbb{R}$-divisors on projective varieties (over a number field) using results of Moriwaki, extending the equidistribution theorem of Yuan.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2020-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/jems/1354","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Suppose $\mathcal{E} \to B$ is a non-isotrivial elliptic surface defined over a number field, for smooth projective curve $B$. Let $k$ denote the function field $\overline{\mathbb{Q}}(B)$ and $E$ the associated elliptic curve over $k$. In this article, we construct adelically metrized $\mathbb{R}$-divisors $\overline{D}_X$ on the base curve $B$ over a number field, for each $X \in E(k)\otimes \mathbb{R}$. We prove non-degeneracy of the Arakelov-Zhang intersection numbers $\overline{D}_X\cdot \overline{D}_Y$, as a biquadratic form on $E(k)\otimes \mathbb{R}$. As a consequence, we have the following Bogomolov-type statement for the N\'eron-Tate height functions on the fibers $E_t(\overline{\mathbb{Q}})$ of $\mathcal{E}$ over $t \in B(\overline{\mathbb{Q}})$: given points $P_1, \ldots, P_m \in E(k)$ with $m\geq 2$, there exist an infinite sequence $t_n\in B(\overline{\mathbb{Q}})$ and small-height perturbations $P_{i,t_n}' \in E_{t_n}(\overline{\mathbb{Q}})$ of specializations $P_{i,t_n}$ so that the set $\{P_{1, t_n}', \ldots, P_{m,t_n}'\}$ satisfies at least two independent linear relations for all $n$, if and only if the points $P_1, \ldots, P_m$ are linearly dependent in $E(k)$. This gives a new proof of results of Masser and Zannier and of Barroero and Capuano and extends our earlier results. In the Appendix, we prove an equidistribution theorem for adelically metrized $\mathbb{R}$-divisors on projective varieties (over a number field) using results of Moriwaki, extending the equidistribution theorem of Yuan.
-因子的椭圆曲面与交点
假设$\mathcal{E} \to B$是定义在数域上的非等平凡椭圆曲面,对于光滑射影曲线$B$。设$k$表示函数场$\overline{\mathbb{Q}}(B)$, $E$表示相关的椭圆曲线$k$。在本文中,我们在一个数字字段上的基曲线$B$上为每个$X \in E(k)\otimes \mathbb{R}$构造幂度量的$\mathbb{R}$ -除数$\overline{D}_X$。在$E(k)\otimes \mathbb{R}$上证明了Arakelov-Zhang交数$\overline{D}_X\cdot \overline{D}_Y$的双二次型的非简并性。因此,对于$\mathcal{E}$ / $t \in B(\overline{\mathbb{Q}})$的纤维$E_t(\overline{\mathbb{Q}})$上的nsamron - tate高度函数,我们有以下bogomolov型声明:给定点$P_1, \ldots, P_m \in E(k)$和$m\geq 2$,存在一个无限序列$t_n\in B(\overline{\mathbb{Q}})$和专门化$P_{i,t_n}$的小高度扰动$P_{i,t_n}' \in E_{t_n}(\overline{\mathbb{Q}})$,使得集合$\{P_{1, t_n}', \ldots, P_{m,t_n}'\}$对所有$n$满足至少两个独立的线性关系,当且仅当点$P_1, \ldots, P_m$在$E(k)$中线性相关。这对Masser和Zannier以及Barroero和Capuano的结果给出了新的证明,并推广了我们之前的结果。在附录中,我们利用Moriwaki的结果,推广了Yuan的等分布定理,证明了(在数域上)射影变异上幂度量$\mathbb{R}$ -因子的一个等分布定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信