Array Shadow State Compression for Precise Dynamic Race Detection (T)

James R. Wilcox, P. Finch, C. Flanagan, Stephen N. Freund
{"title":"Array Shadow State Compression for Precise Dynamic Race Detection (T)","authors":"James R. Wilcox, P. Finch, C. Flanagan, Stephen N. Freund","doi":"10.1109/ASE.2015.19","DOIUrl":null,"url":null,"abstract":"Precise dynamic race detectors incur significant time and space overheads, particularly for array-intensive programs, due to the need to store and manipulate analysis (or shadow) state for every element of every array. This paper presents SlimState, a precise dynamic race detector that uses an adaptive, online algorithm to optimize array shadow state representations. SlimState is based on the insight that common array access patterns lead to analogous patterns in array shadow state, enabling optimized, space efficient representations of array shadow state with no loss in precision. We have implemented SlimState for Java. Experiments on a variety of benchmarks show that array shadow compression reduces the space and time overhead of race detection by 27% and 9%, respectively. It is particularly effective for array-intensive programs, reducing space and time overheads by 35% and 17%, respectively, on these programs.","PeriodicalId":6586,"journal":{"name":"2015 30th IEEE/ACM International Conference on Automated Software Engineering (ASE)","volume":"51 1","pages":"155-165"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 30th IEEE/ACM International Conference on Automated Software Engineering (ASE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASE.2015.19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

Abstract

Precise dynamic race detectors incur significant time and space overheads, particularly for array-intensive programs, due to the need to store and manipulate analysis (or shadow) state for every element of every array. This paper presents SlimState, a precise dynamic race detector that uses an adaptive, online algorithm to optimize array shadow state representations. SlimState is based on the insight that common array access patterns lead to analogous patterns in array shadow state, enabling optimized, space efficient representations of array shadow state with no loss in precision. We have implemented SlimState for Java. Experiments on a variety of benchmarks show that array shadow compression reduces the space and time overhead of race detection by 27% and 9%, respectively. It is particularly effective for array-intensive programs, reducing space and time overheads by 35% and 17%, respectively, on these programs.
精确动态种族检测的阵列阴影状态压缩(T)
精确的动态竞争检测器会导致大量的时间和空间开销,特别是对于数组密集型程序,因为需要存储和操作每个数组的每个元素的分析(或阴影)状态。本文介绍了一种精确的动态竞赛检测器SlimState,它使用自适应在线算法来优化阵列阴影状态表示。SlimState基于这样一种认识,即常见的数组访问模式会导致数组阴影状态中的类似模式,从而实现优化的、空间高效的数组阴影状态表示,而不会损失精度。我们已经为Java实现了SlimState。在各种基准测试上的实验表明,阵列阴影压缩使竞赛检测的空间和时间开销分别减少了27%和9%。它对数组密集型程序特别有效,在这些程序上分别减少了35%和17%的空间和时间开销。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信