{"title":"Breast mass classification based on supervised contrastive learning and multi-view consistency penalty on mammography","authors":"Lilei Sun, Jie Wen, Junqian Wang, Zheng Zhang, Yong Zhao, Guiying Zhang, Yong Xu","doi":"10.1049/bme2.12076","DOIUrl":null,"url":null,"abstract":"<p>Breast cancer accounts for the largest number of patients among all cancers in the world. Intervention treatment for early breast cancer can dramatically extend a woman's 5-year survival rate. However, the lack of public available breast mammography databases in the field of Computer-aided Diagnosis and the insufficient feature extraction ability from breast mammography limit the diagnostic performance of breast cancer. In this paper, A novel classification algorithm based on Convolutional Neural Network (CNN) is proposed to improve the diagnostic performance for breast cancer on mammography. A multi-view network is designed to extract the complementary information between the Craniocaudal (CC) and Mediolateral Oblique (MLO) mammographic views of a breast mass. For the different predictions of the features extracted from the CC view and MLO view of the same breast mass, the proposed algorithm forces the network to extract the consistent features from the two views by the cross-entropy function with an added consistent penalty term. To exploit the discriminative features from the insufficient mammographic images, the authors learnt an encoder in the classification model to learn the invariable representations from the mammographic breast mass by Supervised Contrastive Learning (SCL) to weaken the side effect of colour jitter and illumination of mammographic breast mass on image quality degradation. The experimental results of all the classification algorithms mentioned in this paper on Digital Database for Screening Mammography (DDSM) illustrate that the proposed algorithm greatly improves the classification performance and diagnostic speed of mammographic breast mass, which is of great significance for breast cancer diagnosis.</p>","PeriodicalId":48821,"journal":{"name":"IET Biometrics","volume":"11 6","pages":"588-600"},"PeriodicalIF":1.8000,"publicationDate":"2022-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/bme2.12076","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Biometrics","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/bme2.12076","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Breast cancer accounts for the largest number of patients among all cancers in the world. Intervention treatment for early breast cancer can dramatically extend a woman's 5-year survival rate. However, the lack of public available breast mammography databases in the field of Computer-aided Diagnosis and the insufficient feature extraction ability from breast mammography limit the diagnostic performance of breast cancer. In this paper, A novel classification algorithm based on Convolutional Neural Network (CNN) is proposed to improve the diagnostic performance for breast cancer on mammography. A multi-view network is designed to extract the complementary information between the Craniocaudal (CC) and Mediolateral Oblique (MLO) mammographic views of a breast mass. For the different predictions of the features extracted from the CC view and MLO view of the same breast mass, the proposed algorithm forces the network to extract the consistent features from the two views by the cross-entropy function with an added consistent penalty term. To exploit the discriminative features from the insufficient mammographic images, the authors learnt an encoder in the classification model to learn the invariable representations from the mammographic breast mass by Supervised Contrastive Learning (SCL) to weaken the side effect of colour jitter and illumination of mammographic breast mass on image quality degradation. The experimental results of all the classification algorithms mentioned in this paper on Digital Database for Screening Mammography (DDSM) illustrate that the proposed algorithm greatly improves the classification performance and diagnostic speed of mammographic breast mass, which is of great significance for breast cancer diagnosis.
IET BiometricsCOMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-
CiteScore
5.90
自引率
0.00%
发文量
46
审稿时长
33 weeks
期刊介绍:
The field of biometric recognition - automated recognition of individuals based on their behavioural and biological characteristics - has now reached a level of maturity where viable practical applications are both possible and increasingly available. The biometrics field is characterised especially by its interdisciplinarity since, while focused primarily around a strong technological base, effective system design and implementation often requires a broad range of skills encompassing, for example, human factors, data security and database technologies, psychological and physiological awareness, and so on. Also, the technology focus itself embraces diversity, since the engineering of effective biometric systems requires integration of image analysis, pattern recognition, sensor technology, database engineering, security design and many other strands of understanding.
The scope of the journal is intentionally relatively wide. While focusing on core technological issues, it is recognised that these may be inherently diverse and in many cases may cross traditional disciplinary boundaries. The scope of the journal will therefore include any topics where it can be shown that a paper can increase our understanding of biometric systems, signal future developments and applications for biometrics, or promote greater practical uptake for relevant technologies:
Development and enhancement of individual biometric modalities including the established and traditional modalities (e.g. face, fingerprint, iris, signature and handwriting recognition) and also newer or emerging modalities (gait, ear-shape, neurological patterns, etc.)
Multibiometrics, theoretical and practical issues, implementation of practical systems, multiclassifier and multimodal approaches
Soft biometrics and information fusion for identification, verification and trait prediction
Human factors and the human-computer interface issues for biometric systems, exception handling strategies
Template construction and template management, ageing factors and their impact on biometric systems
Usability and user-oriented design, psychological and physiological principles and system integration
Sensors and sensor technologies for biometric processing
Database technologies to support biometric systems
Implementation of biometric systems, security engineering implications, smartcard and associated technologies in implementation, implementation platforms, system design and performance evaluation
Trust and privacy issues, security of biometric systems and supporting technological solutions, biometric template protection
Biometric cryptosystems, security and biometrics-linked encryption
Links with forensic processing and cross-disciplinary commonalities
Core underpinning technologies (e.g. image analysis, pattern recognition, computer vision, signal processing, etc.), where the specific relevance to biometric processing can be demonstrated
Applications and application-led considerations
Position papers on technology or on the industrial context of biometric system development
Adoption and promotion of standards in biometrics, improving technology acceptance, deployment and interoperability, avoiding cross-cultural and cross-sector restrictions
Relevant ethical and social issues