An analysis of stress and strain for orthotropic toroidal shells

Xia Zhixi, Ren Wenmin
{"title":"An analysis of stress and strain for orthotropic toroidal shells","authors":"Xia Zhixi,&nbsp;Ren Wenmin","doi":"10.1016/S0167-899X(86)80021-0","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper an analysis of stress and strain for orthotropic toroidal shells on the basis of the linear theory of thin elastic shell is presented. The asymptotic solution has been obtained.</p><p>The results are suitable for λ = <em>E</em><sub>1</sub> / <em>E</em><sub>2</sub> &gt; 0.3, where <em>E</em><sub>1</sub>, <em>E</em><sub>2</sub> are reduced modulus of elasticity in the direction of the meridian and the parallel circle, respectively.</p></div>","PeriodicalId":82205,"journal":{"name":"Nuclear engineering and design/fusion : an international journal devoted to the thermal, mechanical, materials, structural, and design problems of fusion energy","volume":"3 3","pages":"Pages 309-318"},"PeriodicalIF":0.0000,"publicationDate":"1986-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0167-899X(86)80021-0","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear engineering and design/fusion : an international journal devoted to the thermal, mechanical, materials, structural, and design problems of fusion energy","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167899X86800210","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper an analysis of stress and strain for orthotropic toroidal shells on the basis of the linear theory of thin elastic shell is presented. The asymptotic solution has been obtained.

The results are suitable for λ = E1 / E2 > 0.3, where E1, E2 are reduced modulus of elasticity in the direction of the meridian and the parallel circle, respectively.

正交各向异性环面壳的应力应变分析
本文以弹性薄壳线性理论为基础,对正交各向异性环面壳进行了应力应变分析。得到了渐近解。λ = E1 / E2 >0.3,其中E1、E2分别为子午线方向和平行圆方向的降维弹性模量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信