Improved Runge-Kutta Method for Oscillatory Problem Solution Using Trigonometric Fitting Approach

Kasim Hussain, Waleed J. Hasan
{"title":"Improved Runge-Kutta Method for Oscillatory Problem Solution Using Trigonometric Fitting Approach","authors":"Kasim Hussain, Waleed J. Hasan","doi":"10.30526/36.1.2963","DOIUrl":null,"url":null,"abstract":"This paper provides a four-stage Trigonometrically Fitted Improved Runge-Kutta (TFIRK4) method of four orders to solve oscillatory problems, which contains an oscillatory character in the solutions. Compared to the traditional Runge-Kutta method, the Improved Runge-Kutta (IRK) method is a natural two-step method requiring fewer steps. The suggested method extends the fourth-order Improved Runge-Kutta (IRK4) method with trigonometric calculations. This approach is intended to integrate problems with particular initial value problems (IVPs) using the set functions  and   for trigonometrically fitted. To improve the method's accuracy, the problem primary frequency  is used. The novel method is more accurate than the conventional Runge-Kutta method and IRK4. Several test problems for the system of first-order ordinary differential equations carry out numerically to demonstrate the effectiveness of this approach. The computational studies show that the TFIRK4 approach is more efficient than the existing Runge-Kutta methods.","PeriodicalId":13022,"journal":{"name":"Ibn AL- Haitham Journal For Pure and Applied Sciences","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ibn AL- Haitham Journal For Pure and Applied Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30526/36.1.2963","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper provides a four-stage Trigonometrically Fitted Improved Runge-Kutta (TFIRK4) method of four orders to solve oscillatory problems, which contains an oscillatory character in the solutions. Compared to the traditional Runge-Kutta method, the Improved Runge-Kutta (IRK) method is a natural two-step method requiring fewer steps. The suggested method extends the fourth-order Improved Runge-Kutta (IRK4) method with trigonometric calculations. This approach is intended to integrate problems with particular initial value problems (IVPs) using the set functions  and   for trigonometrically fitted. To improve the method's accuracy, the problem primary frequency  is used. The novel method is more accurate than the conventional Runge-Kutta method and IRK4. Several test problems for the system of first-order ordinary differential equations carry out numerically to demonstrate the effectiveness of this approach. The computational studies show that the TFIRK4 approach is more efficient than the existing Runge-Kutta methods.
用三角拟合方法求解振动问题的改进龙格-库塔法
本文提出了一种求解振荡问题的四阶三角拟合改进龙格-库塔(TFIRK4)方法,该方法的解中包含振荡特征。与传统的龙格-库塔方法相比,改进的龙格-库塔(IRK)方法是一种自然的两步法,所需的步骤更少。该方法将四阶改进龙格-库塔(IRK4)方法扩展为三角计算方法。该方法旨在利用集合函数和三角拟合将问题与特定初值问题(ivp)集成。为了提高方法的准确性,采用了问题主频。该方法比传统的龙格-库塔法和IRK4法精度更高。通过对一阶常微分方程组的几个测试问题进行数值计算,证明了该方法的有效性。计算研究表明,TFIRK4方法比现有的龙格-库塔方法更有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
67
审稿时长
18 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信