Ahmed F. Hassoon, Hazim Hussain, Nagham T. Ibraheem
{"title":"Study Effect of Some Atmospheric Elements on COVID-19 Infections in Iraq","authors":"Ahmed F. Hassoon, Hazim Hussain, Nagham T. Ibraheem","doi":"10.23851/MJS.V32I2.987","DOIUrl":null,"url":null,"abstract":"In late 2019 and in Wuhan, a new disease appears, consider as an extension of SARS-COV2 epidemic. This epidemic virus has configured a danger to global health. We studied the effect of some atmospheric elements in Iraq with a number of (COVID-19) infections. In this study daily infections in three regions of Iraq compares with (T max -T min ) and (RH) observed in stations Mosul (represent north region), Baghdad and Rutba (represent middle regions), and Basra (represent south region). It's found that increasing the difference between Tmax and Tmin means more infections, except for the northern province. As for the relative humidity, it is inversely proportional to infections with the correlation coefficient R = -0.6 in Baghdad station, and in the southern province with R = -0.32, and the opposite occurs in the northern province. The results also indicate that increasing the relative humidity to more than 70% was effective in increasing the infections. Solar radiation was studied over the city of Baghdad and its effect on infections because solar radiation contains a large proportion of ultraviolet rays that killed many viruses, the study indicates an inverse relationship because most of the patients are infected in the shade and there is no clear relationship. In late 2019 and in Wuhan, a new decease appears, consider as extension of SARS-COV2 epidemic. This epidemic virus has configured a danger on the global health. We studied the effect of some atmospheric elements in Iraq with number of (COVID-19) infections. At this study daily infections in three regions of Iraq compare with (T max -T min ) and (RH) observed in stations Mosul (represent north region), Baghdad and Rutba (represent middle regions) and Basra (represent south region). It's found that increasing the difference between Tmax and Tmin means more infections, except for the northern province. As for the relative humidity it is inversely proportional to infections with the correlation coefficient R = -0.6 in Baghdad station, and in the southern province with R = -0.32, and the opposite occurs in the northern province. The results also indicate that increasing the relative humidity to more than 70% was effective in increasing the infections. Solar radiation was studied over the city of Baghdad and its effect on infections because solar radiation contains a large proportion of ultraviolet rays that killed many viruses, the study indicates an inverse relationship because most of the patients are infected in the shade and there is no clear relationship.","PeriodicalId":7515,"journal":{"name":"Al-Mustansiriyah Journal of Sciences","volume":"27 1","pages":"76-81"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Al-Mustansiriyah Journal of Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23851/MJS.V32I2.987","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
In late 2019 and in Wuhan, a new disease appears, consider as an extension of SARS-COV2 epidemic. This epidemic virus has configured a danger to global health. We studied the effect of some atmospheric elements in Iraq with a number of (COVID-19) infections. In this study daily infections in three regions of Iraq compares with (T max -T min ) and (RH) observed in stations Mosul (represent north region), Baghdad and Rutba (represent middle regions), and Basra (represent south region). It's found that increasing the difference between Tmax and Tmin means more infections, except for the northern province. As for the relative humidity, it is inversely proportional to infections with the correlation coefficient R = -0.6 in Baghdad station, and in the southern province with R = -0.32, and the opposite occurs in the northern province. The results also indicate that increasing the relative humidity to more than 70% was effective in increasing the infections. Solar radiation was studied over the city of Baghdad and its effect on infections because solar radiation contains a large proportion of ultraviolet rays that killed many viruses, the study indicates an inverse relationship because most of the patients are infected in the shade and there is no clear relationship. In late 2019 and in Wuhan, a new decease appears, consider as extension of SARS-COV2 epidemic. This epidemic virus has configured a danger on the global health. We studied the effect of some atmospheric elements in Iraq with number of (COVID-19) infections. At this study daily infections in three regions of Iraq compare with (T max -T min ) and (RH) observed in stations Mosul (represent north region), Baghdad and Rutba (represent middle regions) and Basra (represent south region). It's found that increasing the difference between Tmax and Tmin means more infections, except for the northern province. As for the relative humidity it is inversely proportional to infections with the correlation coefficient R = -0.6 in Baghdad station, and in the southern province with R = -0.32, and the opposite occurs in the northern province. The results also indicate that increasing the relative humidity to more than 70% was effective in increasing the infections. Solar radiation was studied over the city of Baghdad and its effect on infections because solar radiation contains a large proportion of ultraviolet rays that killed many viruses, the study indicates an inverse relationship because most of the patients are infected in the shade and there is no clear relationship.
2019年底,在武汉出现了一种新的疾病,被认为是SARS-COV2流行病的延伸。这种流行性病毒对全球健康构成了威胁。我们研究了伊拉克一些大气因素对一些(COVID-19)感染的影响。在本研究中,伊拉克三个地区的每日感染与在摩苏尔(代表北部地区)、巴格达和鲁特巴(代表中部地区)以及巴士拉(代表南部地区)观测到的(T max -T min)和(RH)进行了比较。结果发现,除北部省份外,Tmax和Tmin之差越大,感染人数就越多。相对湿度与感染呈反比,巴格达站的相关系数为-0.6,南部省份的相关系数为-0.32,北部省份则相反。结果还表明,将相对湿度提高到70%以上可以有效地增加感染。研究人员对巴格达市上空的太阳辐射及其对感染的影响进行了研究,因为太阳辐射中含有大量杀死许多病毒的紫外线,研究表明两者呈反比关系,因为大多数病人是在阴凉处感染的,两者之间没有明确的关系。2019年底,武汉出现了一种新的疾病,被认为是SARS-COV2疫情的延伸。这种流行性病毒对全球健康构成了威胁。我们研究了伊拉克一些大气因素对COVID-19感染人数的影响。在本研究中,伊拉克三个地区的每日感染与摩苏尔(代表北部地区)、巴格达和鲁特巴(代表中部地区)以及巴士拉(代表南部地区)监测站观察到的(T max -T min)和(RH)进行了比较。结果发现,除北部省份外,Tmax和Tmin之差越大,感染人数就越多。相对湿度与感染呈反比,巴格达站的相关系数为-0.6,南部省份的相关系数为-0.32,北部省份的相关系数则相反。结果还表明,将相对湿度提高到70%以上可以有效地增加感染。研究人员对巴格达市上空的太阳辐射及其对感染的影响进行了研究,因为太阳辐射中含有大量杀死许多病毒的紫外线,研究表明两者呈反比关系,因为大多数病人是在阴凉处感染的,两者之间没有明确的关系。