B. Campbell, P. Agarwal, Christopher E. Curtis, Guangqiang Yang, Angshuman Singha, Kathleen Casstevens, Gizem Ersoy Gokcal
{"title":"Slugging Fatigue Assessment for Steel Lazy Wave Risers","authors":"B. Campbell, P. Agarwal, Christopher E. Curtis, Guangqiang Yang, Angshuman Singha, Kathleen Casstevens, Gizem Ersoy Gokcal","doi":"10.4043/30922-ms","DOIUrl":null,"url":null,"abstract":"\n The objective of this paper is to introduce a new analysis methodology for assessment of riser fatigue due to slugging. Under certain flow regimes, a multiphase (oil-gas-water) flow can result in slug flow, in which a sequence of relatively high density slugs and relatively low density bubbles propagate along the flowline and the riser. The variation of slug and bubble density at a location with time is random, and slug characteristics can also change significantly along the riser length. Due to local and global weight variations, the riser undergoes cycles of bending which cause fatigue. By explicitly modeling full spatial and temporal variability and randomness of slugs, the new analysis method is significantly more accurate than other methods and it captures physics of riser's slugging response.\n The slugging fatigue of a steel lazy wave riser was analyzed in Orcaflex software by modeling a repeating pair of slug and bubble with constant slug and bubble densities and associated lengths over the 3-hour simulation time. A separate slug train was propagated in five sub-segments of the riser. To model a more accurate and realistic representation of slugging behavior, the time series of density was extracted at each node from the multiphase flow simulator Olga. Statistical and spectral analysis of the Olga output showed that assumptions of constant slug-bubble density, and of slug behavior being uniform over long segments of riser are too simplistic. Therefore, full time series of density at each node was input into the riser analysis using the existing capabilities of Orcaflex software. As the Orcaflex slug form approach was computationally expensive, we also developed an extrenal slug loader, which provides same level of accuracy while being computationally fast and full automated.\n The new method shows that the cyclic riser response at the touchdown point (TDP) is composed of two parts. One is the relatively short period (~20-60 seconds) fluctuations that occur because of local weight variations as a slug-bubble passes a riser node. The other is the relatively long period (~10-30 minutes) fluctuations that occur due to global weight variations, which are due to spatial integration of density time series over the lower catenary. These long period fluctuations drive the TDP fatigue. Preliminary field measurements with an ROV, while inducing temporary slugging in the riser, confirmed analytical predictions of long period and high amplitude motions at hog bend.\n This paper presents a new and significantly more accurate method for analyzing riser fatigue due to slugging. Previously unknown behavior of very long period and high amplitude riser motions is identified and explained. SLWR response to slugging can be an important contributor to the overall fatigue design budget especially at the TDP. This work reflects ExxonMobil's on-going efforts to ensure that we maintain safe designs as we adopt systems new to us in new and challenging environments.","PeriodicalId":11084,"journal":{"name":"Day 4 Thu, August 19, 2021","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 4 Thu, August 19, 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4043/30922-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
The objective of this paper is to introduce a new analysis methodology for assessment of riser fatigue due to slugging. Under certain flow regimes, a multiphase (oil-gas-water) flow can result in slug flow, in which a sequence of relatively high density slugs and relatively low density bubbles propagate along the flowline and the riser. The variation of slug and bubble density at a location with time is random, and slug characteristics can also change significantly along the riser length. Due to local and global weight variations, the riser undergoes cycles of bending which cause fatigue. By explicitly modeling full spatial and temporal variability and randomness of slugs, the new analysis method is significantly more accurate than other methods and it captures physics of riser's slugging response.
The slugging fatigue of a steel lazy wave riser was analyzed in Orcaflex software by modeling a repeating pair of slug and bubble with constant slug and bubble densities and associated lengths over the 3-hour simulation time. A separate slug train was propagated in five sub-segments of the riser. To model a more accurate and realistic representation of slugging behavior, the time series of density was extracted at each node from the multiphase flow simulator Olga. Statistical and spectral analysis of the Olga output showed that assumptions of constant slug-bubble density, and of slug behavior being uniform over long segments of riser are too simplistic. Therefore, full time series of density at each node was input into the riser analysis using the existing capabilities of Orcaflex software. As the Orcaflex slug form approach was computationally expensive, we also developed an extrenal slug loader, which provides same level of accuracy while being computationally fast and full automated.
The new method shows that the cyclic riser response at the touchdown point (TDP) is composed of two parts. One is the relatively short period (~20-60 seconds) fluctuations that occur because of local weight variations as a slug-bubble passes a riser node. The other is the relatively long period (~10-30 minutes) fluctuations that occur due to global weight variations, which are due to spatial integration of density time series over the lower catenary. These long period fluctuations drive the TDP fatigue. Preliminary field measurements with an ROV, while inducing temporary slugging in the riser, confirmed analytical predictions of long period and high amplitude motions at hog bend.
This paper presents a new and significantly more accurate method for analyzing riser fatigue due to slugging. Previously unknown behavior of very long period and high amplitude riser motions is identified and explained. SLWR response to slugging can be an important contributor to the overall fatigue design budget especially at the TDP. This work reflects ExxonMobil's on-going efforts to ensure that we maintain safe designs as we adopt systems new to us in new and challenging environments.