A Tight Analysis of Hutchinson's Diagonal Estimator

Prathamesh Dharangutte, C. Musco
{"title":"A Tight Analysis of Hutchinson's Diagonal Estimator","authors":"Prathamesh Dharangutte, C. Musco","doi":"10.48550/arXiv.2208.03268","DOIUrl":null,"url":null,"abstract":"Let $\\mathbf{A}\\in \\mathbb{R}^{n\\times n}$ be a matrix with diagonal $\\text{diag}(\\mathbf{A})$ and let $\\bar{\\mathbf{A}}$ be $\\mathbf{A}$ with its diagonal set to all zeros. We show that Hutchinson's estimator run for $m$ iterations returns a diagonal estimate $\\tilde{d}\\in \\mathbb{R}^n$ such that with probability $(1-\\delta)$, $$\\|\\tilde{d} - \\text{diag}(\\mathbf{A})\\|_2 \\leq c\\sqrt{\\frac{\\log(2/\\delta)}{m}}\\|\\bar{\\mathbf{A}}\\|_F,$$ where $c$ is a fixed constant independent of all other parameters. This results improves on a recent result of [Baston and Nakatsukasa, 2022] by a $\\log(n)$ factor, yielding a bound that is independent of the matrix dimension $n$.","PeriodicalId":93491,"journal":{"name":"Proceedings of the SIAM Symposium on Simplicity in Algorithms (SOSA)","volume":"226 1","pages":"353-364"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the SIAM Symposium on Simplicity in Algorithms (SOSA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2208.03268","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Let $\mathbf{A}\in \mathbb{R}^{n\times n}$ be a matrix with diagonal $\text{diag}(\mathbf{A})$ and let $\bar{\mathbf{A}}$ be $\mathbf{A}$ with its diagonal set to all zeros. We show that Hutchinson's estimator run for $m$ iterations returns a diagonal estimate $\tilde{d}\in \mathbb{R}^n$ such that with probability $(1-\delta)$, $$\|\tilde{d} - \text{diag}(\mathbf{A})\|_2 \leq c\sqrt{\frac{\log(2/\delta)}{m}}\|\bar{\mathbf{A}}\|_F,$$ where $c$ is a fixed constant independent of all other parameters. This results improves on a recent result of [Baston and Nakatsukasa, 2022] by a $\log(n)$ factor, yielding a bound that is independent of the matrix dimension $n$.
Hutchinson对角估计量的严密分析
设$\mathbf{A}\in \mathbb{R}^{n\times n}$为对角线为$\text{diag}(\mathbf{A})$的矩阵,设$\bar{\mathbf{A}}$为$\mathbf{A}$,其对角线全为0。我们展示了运行$m$迭代的Hutchinson估计器返回一个对角线估计$\tilde{d}\in \mathbb{R}^n$,其概率为$(1-\delta)$, $$\|\tilde{d} - \text{diag}(\mathbf{A})\|_2 \leq c\sqrt{\frac{\log(2/\delta)}{m}}\|\bar{\mathbf{A}}\|_F,$$,其中$c$是一个独立于所有其他参数的固定常数。该结果比[Baston和Nakatsukasa, 2022]最近的结果改进了$\log(n)$因子,产生了一个与矩阵维数无关的界$n$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信