MCTS/EA hybrid GVGAI players and game difficulty estimation

Hendrik Horn, Vanessa Volz, Diego Perez Liebana, M. Preuss
{"title":"MCTS/EA hybrid GVGAI players and game difficulty estimation","authors":"Hendrik Horn, Vanessa Volz, Diego Perez Liebana, M. Preuss","doi":"10.1109/CIG.2016.7860384","DOIUrl":null,"url":null,"abstract":"In the General Video Game Playing competitions of the last years, Monte-Carlo tree search as well as Evolutionary Algorithm based controllers have been successful. However, both approaches have certain weaknesses, suggesting that certain hybrids could outperform both. We envision and experimentally compare several types of hybrids of two basic approaches, as well as some possible extensions. In order to achieve a better understanding of the games in the competition and the strength and weaknesses of different controllers, we also propose and apply a novel game difficulty estimation scheme based on several observable game characteristics.","PeriodicalId":6594,"journal":{"name":"2016 IEEE Conference on Computational Intelligence and Games (CIG)","volume":"255 1","pages":"1-8"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Conference on Computational Intelligence and Games (CIG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIG.2016.7860384","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

Abstract

In the General Video Game Playing competitions of the last years, Monte-Carlo tree search as well as Evolutionary Algorithm based controllers have been successful. However, both approaches have certain weaknesses, suggesting that certain hybrids could outperform both. We envision and experimentally compare several types of hybrids of two basic approaches, as well as some possible extensions. In order to achieve a better understanding of the games in the competition and the strength and weaknesses of different controllers, we also propose and apply a novel game difficulty estimation scheme based on several observable game characteristics.
MCTS/EA混合GVGAI玩家和游戏难度估算
在过去几年的通用电子游戏比赛中,蒙特卡洛树搜索和基于进化算法的控制器都取得了成功。然而,这两种方法都有一定的弱点,这表明某些混合方法可能比这两种方法都要好。我们设想并实验比较了两种基本方法的几种混合类型,以及一些可能的扩展。为了更好地理解比赛中的游戏和不同控制器的优缺点,我们还提出并应用了一种基于几个可观察游戏特征的游戏难度估计方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信