Daohua Bi, M. Dix, S. Marsland, S. O’Farrell, Arnold Sullivan, R. Bodman, R. Law, I. Harman, J. Srbinovsky, H. Rashid, P. Dobrohotoff, C. Mackallah, Hailin Yan, A. Hirst, A. Savita, Fabio Boeira Dias, M. Woodhouse, R. Fiedler, A. Heerdegen
{"title":"Configuration and spin-up of ACCESS-CM2, the new generation Australian Community Climate and Earth System Simulator Coupled Model","authors":"Daohua Bi, M. Dix, S. Marsland, S. O’Farrell, Arnold Sullivan, R. Bodman, R. Law, I. Harman, J. Srbinovsky, H. Rashid, P. Dobrohotoff, C. Mackallah, Hailin Yan, A. Hirst, A. Savita, Fabio Boeira Dias, M. Woodhouse, R. Fiedler, A. Heerdegen","doi":"10.1071/es19040","DOIUrl":null,"url":null,"abstract":"\nA new version of the Australian Community Climate and Earth System Simulator coupled model, ACCESS-CM2, has been developed for a wide range of climate modelling research and applications. In particular, ACCESS-CM2 is one of Australia’s contributions to the World Climate Research Programme’s Coupled Model Intercomparison Project Phase 6 (CMIP6). Compared with the ACCESS1.3 model used for our CMIP5 submission, all model components have been upgraded as well as the coupling framework (OASIS3-MCT) and experiment control system (Rose/Cylc). The component models are: UM10.6 GA7.1 for the atmosphere, CABLE2.5 for the land surface, MOM5 for the ocean, and CICE5.1.2 for the sea ice. This paper describes the model configuration of ACCESS-CM2, documents the experimental set up, and assesses the model performance for the preindustrial spin-up simulation in comparison against (reconstructed) observations and ACCESS1.3 results. While the performance of the two generations of the ACCESS coupled model is largely comparable, ACCESS-CM2 shows better global hydrological balance, more realistic ocean water properties (in terms of spatial distribution) and meridional overturning circulation in the Southern Ocean but a poorer simulation of the Antarctic sea ice and a larger energy imbalance at the top of atmosphere. This energy imbalance reflects a noticeable warming trend of the global ocean over the spin-up period.\n","PeriodicalId":55419,"journal":{"name":"Journal of Southern Hemisphere Earth Systems Science","volume":"3 3 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2020-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"108","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Southern Hemisphere Earth Systems Science","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1071/es19040","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 108
Abstract
A new version of the Australian Community Climate and Earth System Simulator coupled model, ACCESS-CM2, has been developed for a wide range of climate modelling research and applications. In particular, ACCESS-CM2 is one of Australia’s contributions to the World Climate Research Programme’s Coupled Model Intercomparison Project Phase 6 (CMIP6). Compared with the ACCESS1.3 model used for our CMIP5 submission, all model components have been upgraded as well as the coupling framework (OASIS3-MCT) and experiment control system (Rose/Cylc). The component models are: UM10.6 GA7.1 for the atmosphere, CABLE2.5 for the land surface, MOM5 for the ocean, and CICE5.1.2 for the sea ice. This paper describes the model configuration of ACCESS-CM2, documents the experimental set up, and assesses the model performance for the preindustrial spin-up simulation in comparison against (reconstructed) observations and ACCESS1.3 results. While the performance of the two generations of the ACCESS coupled model is largely comparable, ACCESS-CM2 shows better global hydrological balance, more realistic ocean water properties (in terms of spatial distribution) and meridional overturning circulation in the Southern Ocean but a poorer simulation of the Antarctic sea ice and a larger energy imbalance at the top of atmosphere. This energy imbalance reflects a noticeable warming trend of the global ocean over the spin-up period.
期刊介绍:
The Journal of Southern Hemisphere Earth Systems Science (JSHESS) publishes broad areas of research with a distinct emphasis on the Southern Hemisphere. The scope of the Journal encompasses the study of the mean state, variability and change of the atmosphere, oceans, and land surface, including the cryosphere, from hemispheric to regional scales.
general circulation of the atmosphere and oceans,
climate change and variability ,
climate impacts,
climate modelling ,
past change in the climate system including palaeoclimate variability,
atmospheric dynamics,
synoptic meteorology,
mesoscale meteorology and severe weather,
tropical meteorology,
observation systems,
remote sensing of atmospheric, oceanic and land surface processes,
weather, climate and ocean prediction,
atmospheric and oceanic composition and chemistry,
physical oceanography,
air‐sea interactions,
coastal zone processes,
hydrology,
cryosphere‐atmosphere interactions,
land surface‐atmosphere interactions,
space weather, including impacts and mitigation on technology,
ionospheric, magnetospheric, auroral and space physics,
data assimilation applied to the above subject areas .
Authors are encouraged to contact the Editor for specific advice on whether the subject matter of a proposed submission is appropriate for the Journal of Southern Hemisphere Earth Systems Science.