Shigeru Sugiyama , Kohji Satomi , Nozomi Kondo , Naoya Shigemoto , Hiromu Hayashi , John B. Moffat
{"title":"Role of surface chlorine species in the oxidative coupling of methane in the presence of tetrachloromethane on magnesium phosphate and sulphate","authors":"Shigeru Sugiyama , Kohji Satomi , Nozomi Kondo , Naoya Shigemoto , Hiromu Hayashi , John B. Moffat","doi":"10.1016/0304-5102(94)00096-4","DOIUrl":null,"url":null,"abstract":"<div><p>The oxidative coupling of methane was carried out over Mg<sub>3</sub> (PO<sub>4</sub>)<sub>2</sub> and MgSO<sub>4</sub> in the presence of tetrachloromethane (TCM) in order to compare the catalytic activities, the interaction between TCM and each catalyst and the effect of the nature of the anion. The conversion of methane on the sulphate increased with increase in the partial pressure of TCM and of reaction temperature, while with the phosphate the presence of TCM had little effect under the same conditions as those on the sulphate. With both catalysts the addition of TCM increased the selectivities to ethylene. Relatively large quantities of chlorinated species were detected on the catalyst surface of the used phosphate by XPS, although none were detected by XRD analyses. In contrast, only small quantities of chlorinated species were formed on the sulphate catalyst and magnesia was detected by XRD in the bulk phase of the used sulphate. The interactions between TCM and the catalyst and, in particular, the effect of the nature of the anion are discussed.</p></div>","PeriodicalId":16567,"journal":{"name":"分子催化","volume":"93 1","pages":"Pages 53-65"},"PeriodicalIF":0.0000,"publicationDate":"1994-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0304-5102(94)00096-4","citationCount":"28","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"分子催化","FirstCategoryId":"1089","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/0304510294000964","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 28
Abstract
The oxidative coupling of methane was carried out over Mg3 (PO4)2 and MgSO4 in the presence of tetrachloromethane (TCM) in order to compare the catalytic activities, the interaction between TCM and each catalyst and the effect of the nature of the anion. The conversion of methane on the sulphate increased with increase in the partial pressure of TCM and of reaction temperature, while with the phosphate the presence of TCM had little effect under the same conditions as those on the sulphate. With both catalysts the addition of TCM increased the selectivities to ethylene. Relatively large quantities of chlorinated species were detected on the catalyst surface of the used phosphate by XPS, although none were detected by XRD analyses. In contrast, only small quantities of chlorinated species were formed on the sulphate catalyst and magnesia was detected by XRD in the bulk phase of the used sulphate. The interactions between TCM and the catalyst and, in particular, the effect of the nature of the anion are discussed.
期刊介绍:
Journal of Molecular Catalysis (China) is a bimonthly journal, founded in 1987. It is a bimonthly journal, founded in 1987, sponsored by Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, under the supervision of Chinese Academy of Sciences, and published by Science Publishing House, which is a scholarly journal openly circulated both at home and abroad. The journal mainly reports the latest progress and research results on molecular catalysis. It contains academic papers, research briefs, research reports and progress reviews. The content focuses on coordination catalysis, enzyme catalysis, light-ribbed catalysis, stereochemistry in catalysis, catalytic reaction mechanism and kinetics, the study of catalyst surface states and the application of quantum chemistry in catalysis. We also provide contributions on the activation, deactivation and regeneration of homogeneous catalysts, solidified homogeneous catalysts and solidified enzyme catalysts in industrial catalytic processes, as well as on the optimisation and characterisation of catalysts for new catalytic processes.
The main target readers are scientists and postgraduates working in catalysis in research institutes, industrial and mining enterprises, as well as teachers and students of chemistry and chemical engineering departments in colleges and universities. Contributions from related professionals are welcome.