Predicting Waiting Time Overflow on Bank Teller Queues

Ricardo Silva Carvalho, Rommel N. Carvalho, G. N. Ramos, R. Mourão
{"title":"Predicting Waiting Time Overflow on Bank Teller Queues","authors":"Ricardo Silva Carvalho, Rommel N. Carvalho, G. N. Ramos, R. Mourão","doi":"10.1109/ICMLA.2017.00-51","DOIUrl":null,"url":null,"abstract":"This study proposes a predictive model to detect the delay in bank teller queues. Since there are penalties and fines applied to the branches that leave their clients waiting for a long time, detecting these cases as early as possible is essential. Four models were tested: one using a Queuing Theory's formula and the other three using Data Mining algorithms -- Deep Learning (DL), Gradient Boost Machine (GBM), and Random Forest (RF). The results indicated the GBM model as the most efficient, with an accuracy of 97% and a F1-measure of 75%.","PeriodicalId":6636,"journal":{"name":"2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA)","volume":"60 1","pages":"842-847"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2017.00-51","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

This study proposes a predictive model to detect the delay in bank teller queues. Since there are penalties and fines applied to the branches that leave their clients waiting for a long time, detecting these cases as early as possible is essential. Four models were tested: one using a Queuing Theory's formula and the other three using Data Mining algorithms -- Deep Learning (DL), Gradient Boost Machine (GBM), and Random Forest (RF). The results indicated the GBM model as the most efficient, with an accuracy of 97% and a F1-measure of 75%.
预测银行柜员队列的等待时间溢出
本研究提出一种预测模型来侦测银行柜员排队的延迟。因为让客户长时间等待的分行会受到处罚和罚款,所以尽早发现这些案件是至关重要的。测试了四个模型:一个使用排队论公式,另外三个使用数据挖掘算法——深度学习(DL)、梯度增强机(GBM)和随机森林(RF)。结果表明,GBM模型是最有效的,准确率为97%,f1测量值为75%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信