Slow-fast torus knots

Pub Date : 2021-03-10 DOI:10.36045/j.bbms.220208
Renato Huzak, Hildeberto Jard'on-Kojakhmetov
{"title":"Slow-fast torus knots","authors":"Renato Huzak, Hildeberto Jard'on-Kojakhmetov","doi":"10.36045/j.bbms.220208","DOIUrl":null,"url":null,"abstract":"The goal of this paper is to study global dynamics of $C^\\infty$-smooth slow-fast systems on the $2$-torus of class $C^\\infty$ using geometric singular perturbation theory and the notion of slow divergence integral. Given any $m\\in\\mathbb{N}$ and two relatively prime integers $k$ and $l$, we show that there exists a slow-fast system $Y_{\\epsilon}$ on the $2$-torus that has a $2m$-link of type $(k,l)$, i.e. a (disjoint finite) union of $2m$ slow-fast limit cycles each of $(k,l)$-torus knot type, for all small $\\epsilon>0$. The $(k,l)$-torus knot turns around the $2$-torus $k$ times meridionally and $l$ times longitudinally. There are exactly $m$ repelling limit cycles and $m$ attracting limit cycles. Our analysis: a) proves the case of normally hyperbolic singular knots, and b) provides sufficient evidence to conjecture a similar result in some cases where the singular knots have regular nilpotent contact with the fast foliation.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.36045/j.bbms.220208","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The goal of this paper is to study global dynamics of $C^\infty$-smooth slow-fast systems on the $2$-torus of class $C^\infty$ using geometric singular perturbation theory and the notion of slow divergence integral. Given any $m\in\mathbb{N}$ and two relatively prime integers $k$ and $l$, we show that there exists a slow-fast system $Y_{\epsilon}$ on the $2$-torus that has a $2m$-link of type $(k,l)$, i.e. a (disjoint finite) union of $2m$ slow-fast limit cycles each of $(k,l)$-torus knot type, for all small $\epsilon>0$. The $(k,l)$-torus knot turns around the $2$-torus $k$ times meridionally and $l$ times longitudinally. There are exactly $m$ repelling limit cycles and $m$ attracting limit cycles. Our analysis: a) proves the case of normally hyperbolic singular knots, and b) provides sufficient evidence to conjecture a similar result in some cases where the singular knots have regular nilpotent contact with the fast foliation.
分享
查看原文
慢速快环结
本文的目的是研究 $C^\infty$-平稳的慢速快系统上 $2$-类的环面 $C^\infty$ 利用几何奇异摄动理论和慢散度积分的概念。给定任何 $m\in\mathbb{N}$ 两个相对素数 $k$ 和 $l$,我们证明存在一个慢-快系统 $Y_{\epsilon}$ 在 $2$-环面有a $2m$-连杆型式 $(k,l)$的(不相交有限)并 $2m$ 每一个慢速快极限环 $(k,l)$-环面结型,适用于所有小型 $\epsilon>0$. The $(k,l)$-环面结绕 $2$-环面 $k$ 乘以子午线和 $l$ 乘以纵轴。确实有 $m$ 排斥极限环和 $m$ 吸引极限环。我们的分析:a)证明了通常双曲奇异结的情况,b)提供了足够的证据来推测在某些情况下奇异结与快叶理有规则的幂零接触的类似结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信