POLYNOMIAL FUNCTION BASED GUIDANCE FOR IMPACT ANGLE AND TIME CONTROL

IF 0.3 Q4 MATHEMATICS, APPLIED
Tae-Hun Kim
{"title":"POLYNOMIAL FUNCTION BASED GUIDANCE FOR IMPACT ANGLE AND TIME CONTROL","authors":"Tae-Hun Kim","doi":"10.12941/JKSIAM.2015.19.305","DOIUrl":null,"url":null,"abstract":"In this paper, missile homing guidance laws to control the impact angle and time are proposed based on the polynomial function. To derive the guidance commands, we first assume that the acceleration command profile can be represented as a polynomial function with unknown coefficients. After that, the unknown coefficients are determined to achieve the given terminal constrains. Using the determined coefficients, we can finally obtain the state feedback guidance command. The suggested approach to design the guidance laws is simple and provides the more generalized optimal solutions of the impact angle and time control guidance.","PeriodicalId":41717,"journal":{"name":"Journal of the Korean Society for Industrial and Applied Mathematics","volume":"70 1","pages":"305-325"},"PeriodicalIF":0.3000,"publicationDate":"2015-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Korean Society for Industrial and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12941/JKSIAM.2015.19.305","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, missile homing guidance laws to control the impact angle and time are proposed based on the polynomial function. To derive the guidance commands, we first assume that the acceleration command profile can be represented as a polynomial function with unknown coefficients. After that, the unknown coefficients are determined to achieve the given terminal constrains. Using the determined coefficients, we can finally obtain the state feedback guidance command. The suggested approach to design the guidance laws is simple and provides the more generalized optimal solutions of the impact angle and time control guidance.
基于多项式函数的冲击角制导与时间控制
本文提出了基于多项式函数的导弹寻的制导律来控制冲击角和时间。为了推导制导命令,我们首先假设加速度命令轮廓可以表示为一个带未知系数的多项式函数。然后,确定未知系数,以实现给定的终端约束。利用确定的系数,最终得到状态反馈制导命令。所提出的制导律设计方法简单,并提供了更广义的冲击角和时间控制制导最优解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
33.30%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信