K. Laskaridis, Angeliki E. Arapakou, Michael Patronis, I. Kouseris
{"title":"Correlations between the Physical Mechanical Properties of Greek Dimension Stones","authors":"K. Laskaridis, Angeliki E. Arapakou, Michael Patronis, I. Kouseris","doi":"10.3390/materproc2021005028","DOIUrl":null,"url":null,"abstract":"This study focuses on the investigation of possible relations betweenthe physical mechanical properties of natural stones from various places in Greece, i.e., limestones, marbles, sandstones and schists. Specimens were prepared to perform laboratory tests according to the applicable EN. Overall and “by stone type” correlation equations were established between flexural strength under concentrated load valueswithout and either after freeze–thaw cycling or thermal shock, indicating a linear and a powerrelationship, respectively. A power function was establishedbetween flexural strength under a concentrated load and under a constant moment. Results have also shown that water absorption increases linearly with open porosity.","PeriodicalId":18729,"journal":{"name":"Materials Proceedings","volume":"18 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/materproc2021005028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
This study focuses on the investigation of possible relations betweenthe physical mechanical properties of natural stones from various places in Greece, i.e., limestones, marbles, sandstones and schists. Specimens were prepared to perform laboratory tests according to the applicable EN. Overall and “by stone type” correlation equations were established between flexural strength under concentrated load valueswithout and either after freeze–thaw cycling or thermal shock, indicating a linear and a powerrelationship, respectively. A power function was establishedbetween flexural strength under a concentrated load and under a constant moment. Results have also shown that water absorption increases linearly with open porosity.