Image Aesthetic Assessment Based on Pairwise Comparison ­ A Unified Approach to Score Regression, Binary Classification, and Personalization

Jun-Tae Lee, Chang-Su Kim
{"title":"Image Aesthetic Assessment Based on Pairwise Comparison ­ A Unified Approach to Score Regression, Binary Classification, and Personalization","authors":"Jun-Tae Lee, Chang-Su Kim","doi":"10.1109/ICCV.2019.00128","DOIUrl":null,"url":null,"abstract":"We propose a unified approach to three tasks of aesthetic score regression, binary aesthetic classification, and personalized aesthetics. First, we develop a comparator to estimate the ratio of aesthetic scores for two images. Then, we construct a pairwise comparison matrix for multiple reference images and an input image, and predict the aesthetic score of the input via the eigenvalue decomposition of the matrix. By varying the reference images, the proposed algorithm can be used for binary aesthetic classification and personalized aesthetics, as well as generic score regression. Experimental results demonstrate that the proposed unified algorithm provides the state-of-the-art performances in all three tasks of image aesthetics.","PeriodicalId":6728,"journal":{"name":"2019 IEEE/CVF International Conference on Computer Vision (ICCV)","volume":"80 1","pages":"1191-1200"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"38","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE/CVF International Conference on Computer Vision (ICCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2019.00128","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 38

Abstract

We propose a unified approach to three tasks of aesthetic score regression, binary aesthetic classification, and personalized aesthetics. First, we develop a comparator to estimate the ratio of aesthetic scores for two images. Then, we construct a pairwise comparison matrix for multiple reference images and an input image, and predict the aesthetic score of the input via the eigenvalue decomposition of the matrix. By varying the reference images, the proposed algorithm can be used for binary aesthetic classification and personalized aesthetics, as well as generic score regression. Experimental results demonstrate that the proposed unified algorithm provides the state-of-the-art performances in all three tasks of image aesthetics.
基于两两比较的图像美学评价——分数回归、二元分类和个性化的统一方法
我们提出了统一的方法来完成美学评分回归、二元美学分类和个性化美学三项任务。首先,我们开发了一个比较器来估计两个图像的美学分数的比率。然后,我们构建了多个参考图像和一个输入图像的两两比较矩阵,并通过矩阵的特征值分解来预测输入图像的审美评分。通过改变参考图像,该算法可以用于二元美学分类和个性化美学,也可以用于通用评分回归。实验结果表明,所提出的统一算法在图像美学的三个任务中都提供了最先进的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信