Evaluation of Different Classifiers for Sinhala POS Tagging

Sandareka Fernando, Surangika Ranathunga
{"title":"Evaluation of Different Classifiers for Sinhala POS Tagging","authors":"Sandareka Fernando, Surangika Ranathunga","doi":"10.1109/MERCON.2018.8421997","DOIUrl":null,"url":null,"abstract":"This paper presents a comparative evaluation of three state-of-the-art classifiers for Sinhala Parts-of-Speech (POS) tagging. Support Vector Machines (SVM), Hidden Markov Models (HMM) and Conditional Random Fields (CRF) based POS tagger models are generated and tested using different combinations of a corpus of news articles and a corpus of official government documents. CRF is used for the first time in Sinhala POS tagging, thus the best feature set is experimentally derived. To further improve the accuracy of POS tagging, a majority voting based ensemble tagger is created using three individual taggers. This ensemble tagger achieved the highest accuracy in POS tagging than any individual tagger. The two domains (news, and official government documents) used in this study have noticeable differences in writing style and vocabulary. Generating domain specific POS taggers is time consuming and costly due to the overhead involved in creating and manually tagging domain specific corpora, for low resourced languages in particular. Therefore, this study also evaluates the possibility and successfulness of using corpora of different domains in training and testing phases of aforementioned machine learning techniques.","PeriodicalId":6603,"journal":{"name":"2018 Moratuwa Engineering Research Conference (MERCon)","volume":"11 1","pages":"96-101"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Moratuwa Engineering Research Conference (MERCon)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MERCON.2018.8421997","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

This paper presents a comparative evaluation of three state-of-the-art classifiers for Sinhala Parts-of-Speech (POS) tagging. Support Vector Machines (SVM), Hidden Markov Models (HMM) and Conditional Random Fields (CRF) based POS tagger models are generated and tested using different combinations of a corpus of news articles and a corpus of official government documents. CRF is used for the first time in Sinhala POS tagging, thus the best feature set is experimentally derived. To further improve the accuracy of POS tagging, a majority voting based ensemble tagger is created using three individual taggers. This ensemble tagger achieved the highest accuracy in POS tagging than any individual tagger. The two domains (news, and official government documents) used in this study have noticeable differences in writing style and vocabulary. Generating domain specific POS taggers is time consuming and costly due to the overhead involved in creating and manually tagging domain specific corpora, for low resourced languages in particular. Therefore, this study also evaluates the possibility and successfulness of using corpora of different domains in training and testing phases of aforementioned machine learning techniques.
僧伽罗语词性标注中不同分类器的评价
本文对僧伽罗语词性标注的三种最新分类器进行了比较评价。基于支持向量机(SVM)、隐马尔可夫模型(HMM)和条件随机场(CRF)的POS标注器模型被生成,并使用新闻文章语料库和官方政府文件语料库的不同组合进行测试。本文首次将CRF应用于僧伽罗语词性标注中,通过实验推导出了最佳特征集。为了进一步提高POS标注的准确性,使用三个独立的标注器创建了一个基于多数投票的集成标注器。该集成标注器在POS标注中取得了比任何单个标注器都高的准确率。本研究中使用的两个领域(新闻和官方政府文件)在写作风格和词汇方面存在明显差异。生成特定于领域的POS标记器既耗时又昂贵,因为创建和手动标记特定于领域的语料库所涉及的开销,特别是对于资源匮乏的语言。因此,本研究还评估了在上述机器学习技术的训练和测试阶段使用不同领域的语料库的可能性和成功率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信