Backward stochastic differential equations with Markov switching driven by Brownian motion and Poisson random measure

Pub Date : 2015-01-02 DOI:10.1080/17442508.2014.914514
Jingtao Shi, Zhen Wu
{"title":"Backward stochastic differential equations with Markov switching driven by Brownian motion and Poisson random measure","authors":"Jingtao Shi, Zhen Wu","doi":"10.1080/17442508.2014.914514","DOIUrl":null,"url":null,"abstract":"This paper is concerned with backward stochastic differential equations with Markov switching driven by Brownian motion and Poisson random measure. The motivation is a constrained stochastic Riccati equation derived from a stochastic linear quadratic optimal control problem with both Poisson and Markovian jumps. The existence and uniqueness of an adapted solution under global Lipschitz condition on the generator is obtained. The continuous dependence of the solution on parameters is proved. Two comparison theorems are also derived by a generalized Girsanov transformation theorem.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2015-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/17442508.2014.914514","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

This paper is concerned with backward stochastic differential equations with Markov switching driven by Brownian motion and Poisson random measure. The motivation is a constrained stochastic Riccati equation derived from a stochastic linear quadratic optimal control problem with both Poisson and Markovian jumps. The existence and uniqueness of an adapted solution under global Lipschitz condition on the generator is obtained. The continuous dependence of the solution on parameters is proved. Two comparison theorems are also derived by a generalized Girsanov transformation theorem.
分享
查看原文
由布朗运动和泊松随机测度驱动的马尔可夫切换倒向随机微分方程
研究了由布朗运动和泊松随机测度驱动的马尔可夫切换倒向随机微分方程。动机是一个约束随机Riccati方程,该方程由一个具有泊松和马尔可夫跳变的随机线性二次最优控制问题导出。得到了发生器在全局Lipschitz条件下的自适应解的存在唯一性。证明了解对参数的连续依赖。利用广义的格萨诺夫变换定理,导出了两个比较定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信