Estimates for the ratio of the first two eigenvalues of the Dirichlet-Laplace operator with a drift

Pub Date : 2021-01-01 DOI:10.47443/cm.2021.0043
Şerban Bărbuleanu, M. Mihăilescu, Denisa Stancu-Dumitru
{"title":"Estimates for the ratio of the first two eigenvalues of the Dirichlet-Laplace operator with\na drift","authors":"Şerban Bărbuleanu, M. Mihăilescu, Denisa Stancu-Dumitru","doi":"10.47443/cm.2021.0043","DOIUrl":null,"url":null,"abstract":"Abstract Let Ω ⊂ R be an open and bounded set. Consider the eigenvalue problem of the Laplace operator with a drift term −∆u−x ·∇u = λu in Ω subject to the homogeneous Dirichlet boundary condition (u = 0 on ∂Ω). Denote by λ1(Ω) and λ2(Ω) the first two eigenvalues of the problem. We show that λ2(Ω)λ1(Ω) ≤ 1 + 4N−1. In particular, we complement a similar result obtained by Thompson [Stud. Appl. Math. 48 (1969) 281–283] for the classical eigenvalue problem of the Laplace operator.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.47443/cm.2021.0043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Let Ω ⊂ R be an open and bounded set. Consider the eigenvalue problem of the Laplace operator with a drift term −∆u−x ·∇u = λu in Ω subject to the homogeneous Dirichlet boundary condition (u = 0 on ∂Ω). Denote by λ1(Ω) and λ2(Ω) the first two eigenvalues of the problem. We show that λ2(Ω)λ1(Ω) ≤ 1 + 4N−1. In particular, we complement a similar result obtained by Thompson [Stud. Appl. Math. 48 (1969) 281–283] for the classical eigenvalue problem of the Laplace operator.
分享
查看原文
带漂移的狄利克雷-拉普拉斯算子的前两个特征值之比的估计
设Ω∧R是一个开有界集合。考虑在齐次Dirichlet边界条件(∂Ω上u = 0)下,漂移项为−∆u−x·∇u = λu的拉普拉斯算子的特征值问题。用λ1(Ω)和λ2(Ω)表示问题的前两个特征值。我们发现λ2(Ω)λ1(Ω)≤1 + 4N−1。特别地,我们补充了Thompson [Stud]得到的类似结果。达成。数学。48(1969)281-283]对于拉普拉斯算子的经典特征值问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信