Şerban Bărbuleanu, M. Mihăilescu, Denisa Stancu-Dumitru
{"title":"Estimates for the ratio of the first two eigenvalues of the Dirichlet-Laplace operator with\na drift","authors":"Şerban Bărbuleanu, M. Mihăilescu, Denisa Stancu-Dumitru","doi":"10.47443/cm.2021.0043","DOIUrl":null,"url":null,"abstract":"Abstract Let Ω ⊂ R be an open and bounded set. Consider the eigenvalue problem of the Laplace operator with a drift term −∆u−x ·∇u = λu in Ω subject to the homogeneous Dirichlet boundary condition (u = 0 on ∂Ω). Denote by λ1(Ω) and λ2(Ω) the first two eigenvalues of the problem. We show that λ2(Ω)λ1(Ω) ≤ 1 + 4N−1. In particular, we complement a similar result obtained by Thompson [Stud. Appl. Math. 48 (1969) 281–283] for the classical eigenvalue problem of the Laplace operator.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.47443/cm.2021.0043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Let Ω ⊂ R be an open and bounded set. Consider the eigenvalue problem of the Laplace operator with a drift term −∆u−x ·∇u = λu in Ω subject to the homogeneous Dirichlet boundary condition (u = 0 on ∂Ω). Denote by λ1(Ω) and λ2(Ω) the first two eigenvalues of the problem. We show that λ2(Ω)λ1(Ω) ≤ 1 + 4N−1. In particular, we complement a similar result obtained by Thompson [Stud. Appl. Math. 48 (1969) 281–283] for the classical eigenvalue problem of the Laplace operator.