A Pedophysical Relationship between X-ray Computed Tomography and Electrical Resistivity Data

IF 1 4区 工程技术 Q4 ENGINEERING, GEOLOGICAL
M. Cimpoiaşu, O. Kuras, T. Pridmore, S. Mooney
{"title":"A Pedophysical Relationship between X-ray Computed Tomography and Electrical Resistivity Data","authors":"M. Cimpoiaşu, O. Kuras, T. Pridmore, S. Mooney","doi":"10.2113/JEEG19-079","DOIUrl":null,"url":null,"abstract":"Quantitatively linking observations from independent non-invasive soil assessment methods enhances our ability to understand root zone processes. Electrical Resistivity Tomography (ERT) and X-ray Computed Tomography (CT) are two advanced non-invasive technologies routinely employed in soil science. ERT allows 4D process monitoring ( e.g., solute transport) and is sensitive to changes in moisture content (MC) and soil texture. X-ray CT is a higher resolution method used to appraise soil structure. We measured the variation of electrical resistivity and X-ray absorption with gravimetric moisture content (GMC) for two distinct soil types. Experimental results were compared with existing pedophysical relationships that express these dependencies. Based on the good fit between measurements and model predictions, we formulated a new pedophysical relationship that links directly the two soil properties. This will allow a direct translation between ERT and X-ray data for the study of root-zone parameters under well-defined experimental circumstances.","PeriodicalId":15748,"journal":{"name":"Journal of Environmental and Engineering Geophysics","volume":"29 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental and Engineering Geophysics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.2113/JEEG19-079","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 2

Abstract

Quantitatively linking observations from independent non-invasive soil assessment methods enhances our ability to understand root zone processes. Electrical Resistivity Tomography (ERT) and X-ray Computed Tomography (CT) are two advanced non-invasive technologies routinely employed in soil science. ERT allows 4D process monitoring ( e.g., solute transport) and is sensitive to changes in moisture content (MC) and soil texture. X-ray CT is a higher resolution method used to appraise soil structure. We measured the variation of electrical resistivity and X-ray absorption with gravimetric moisture content (GMC) for two distinct soil types. Experimental results were compared with existing pedophysical relationships that express these dependencies. Based on the good fit between measurements and model predictions, we formulated a new pedophysical relationship that links directly the two soil properties. This will allow a direct translation between ERT and X-ray data for the study of root-zone parameters under well-defined experimental circumstances.
x射线计算机断层扫描与电阻率数据的物理关系
定量连接独立的非侵入性土壤评估方法的观测结果,增强了我们理解根区过程的能力。电阻率层析成像(ERT)和x射线计算机层析成像(CT)是土壤科学中常用的两种先进的非侵入性技术。ERT允许4D过程监测(例如,溶质运输),并且对含水量(MC)和土壤质地的变化敏感。x射线CT是一种高分辨率的土壤结构评价方法。我们测量了两种不同土壤类型的电阻率和x射线吸收随重量含水量(GMC)的变化。实验结果与表达这些依赖关系的现有儿童物理关系进行了比较。基于测量和模型预测之间的良好拟合,我们建立了一种新的土壤物理关系,将这两种土壤性质直接联系起来。这将允许ERT和x射线数据之间的直接转换,以便在明确定义的实验环境下研究根区参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Environmental and Engineering Geophysics
Journal of Environmental and Engineering Geophysics 地学-地球化学与地球物理
CiteScore
2.70
自引率
0.00%
发文量
13
审稿时长
6 months
期刊介绍: The JEEG (ISSN 1083-1363) is the peer-reviewed journal of the Environmental and Engineering Geophysical Society (EEGS). JEEG welcomes manuscripts on new developments in near-surface geophysics applied to environmental, engineering, and mining issues, as well as novel near-surface geophysics case histories and descriptions of new hardware aimed at the near-surface geophysics community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信