About the Dynamic Damping Coefficients of a Segmental-Cone Model at Mach M = 2.3.

IF 0.4 Q4 MATHEMATICS
N. Adamov, N. A. Mishchenko, E. A. Chasovnikov
{"title":"About the Dynamic Damping Coefficients of a Segmental-Cone Model at Mach M = 2.3.","authors":"N. Adamov, N. A. Mishchenko, E. A. Chasovnikov","doi":"10.25205/2541-9447-2022-17-1-34-46","DOIUrl":null,"url":null,"abstract":"In order to describe the nonlinear behavior of oscillation amplitude of the segmental-conical model on a transversive rod setup in a wind tunnel at Mach М = 2, a polynomial function of damping derivatives was used. Polynom of the 4th degree as a function of viscous damping allowed to describe two limit cycles observed in experiments. Coefficients of the polynom were determined and showed sufficient agreement with a direct numerical solution of the proposed dynamic equation.","PeriodicalId":43965,"journal":{"name":"Journal of Siberian Federal University-Mathematics & Physics","volume":"39 2 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2022-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Siberian Federal University-Mathematics & Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25205/2541-9447-2022-17-1-34-46","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

In order to describe the nonlinear behavior of oscillation amplitude of the segmental-conical model on a transversive rod setup in a wind tunnel at Mach М = 2, a polynomial function of damping derivatives was used. Polynom of the 4th degree as a function of viscous damping allowed to describe two limit cycles observed in experiments. Coefficients of the polynom were determined and showed sufficient agreement with a direct numerical solution of the proposed dynamic equation.
关于段锥模型在马赫M = 2.3时的动力阻尼系数。
为了描述在М = 2马赫数条件下横杆上的截面锥模型振动幅值的非线性行为,采用了阻尼导数的多项式函数。四次多项式作为粘滞阻尼的函数,允许描述实验中观察到的两个极限环。确定了多项式的系数,并与所提出的动力学方程的直接数值解显示出充分的一致性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
26
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信