{"title":"Repeated oral benzene exposure alters enzymes involved in benzene metabolism.","authors":"D. Daiker, M. T. Moslen, J. Carr, J. Ward","doi":"10.1080/009841096161177","DOIUrl":null,"url":null,"abstract":"Benzene is a known carcinogen and hematopoietic toxin in humans and experimental animals. The effect of acute, high-dose exposure to benzene on hepatic bioactivation and detoxication enzymes has been defined, while little is known about the effect of repeated, low-dose benzene exposure on these enzymes. Our objective was to determine whether repeated, oral benzene exposure alters enzymes involved in benzene metabolism. Specifically, we were concerned with cytochrome P-450-2E1, a bioactivation enzyme, and glutathione transferase and aldehyde dehydrogenase, two detoxifying enzymes. Female CD-1 mice were treated by gavage for 3 wk with benzene doses of 5 mg/kg (0.064 mmol/kg) or 50 mg/kg (0.646 mmol/kg) in corn oil. These doses of benzene produced 0.048 and 0.236 mumol muconic acid/d, respectively. We found that repeated exposure to 50 mg benzene/kg/d decreased P-450-2E1 activity by 34% and induced glutathione transferase activity by 30% without affecting aldehyde dehydrogenase activity. These changes in enzyme activities may serve a protective role against repeated exposure to benzene.","PeriodicalId":17418,"journal":{"name":"Journal of Toxicology and Environmental Health, Part A","volume":"87 1","pages":"439-51"},"PeriodicalIF":0.0000,"publicationDate":"1996-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Toxicology and Environmental Health, Part A","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/009841096161177","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
Abstract
Benzene is a known carcinogen and hematopoietic toxin in humans and experimental animals. The effect of acute, high-dose exposure to benzene on hepatic bioactivation and detoxication enzymes has been defined, while little is known about the effect of repeated, low-dose benzene exposure on these enzymes. Our objective was to determine whether repeated, oral benzene exposure alters enzymes involved in benzene metabolism. Specifically, we were concerned with cytochrome P-450-2E1, a bioactivation enzyme, and glutathione transferase and aldehyde dehydrogenase, two detoxifying enzymes. Female CD-1 mice were treated by gavage for 3 wk with benzene doses of 5 mg/kg (0.064 mmol/kg) or 50 mg/kg (0.646 mmol/kg) in corn oil. These doses of benzene produced 0.048 and 0.236 mumol muconic acid/d, respectively. We found that repeated exposure to 50 mg benzene/kg/d decreased P-450-2E1 activity by 34% and induced glutathione transferase activity by 30% without affecting aldehyde dehydrogenase activity. These changes in enzyme activities may serve a protective role against repeated exposure to benzene.