Investigation of Database Models for Evolving Graphs

Time Pub Date : 2021-01-01 DOI:10.4230/LIPIcs.TIME.2021.6
Alexandros Spitalas, A. Gounaris, K. Tsichlas, Andreas Kosmatopoulos
{"title":"Investigation of Database Models for Evolving Graphs","authors":"Alexandros Spitalas, A. Gounaris, K. Tsichlas, Andreas Kosmatopoulos","doi":"10.4230/LIPIcs.TIME.2021.6","DOIUrl":null,"url":null,"abstract":"We deal with the efficient implementation of storage models for time-varying graphs. To this end, we present an improved approach for the HiNode vertex-centric model based on MongoDB. This approach, apart from its inherent space optimality, exhibits significant improvements in global query execution times, which is the most challenging query type for entity-centric approaches. Not only significant speedups are achieved but more expensive queries can be executed as well, when compared to an implementation based on Cassandra due to the capability to exploit indices to a larger extent and benefit from in-database query processing. 2012 ACM Subject Classification Information systems → Database design and models","PeriodicalId":75226,"journal":{"name":"Time","volume":"44 1","pages":"6:1-6:13"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Time","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.TIME.2021.6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

We deal with the efficient implementation of storage models for time-varying graphs. To this end, we present an improved approach for the HiNode vertex-centric model based on MongoDB. This approach, apart from its inherent space optimality, exhibits significant improvements in global query execution times, which is the most challenging query type for entity-centric approaches. Not only significant speedups are achieved but more expensive queries can be executed as well, when compared to an implementation based on Cassandra due to the capability to exploit indices to a larger extent and benefit from in-database query processing. 2012 ACM Subject Classification Information systems → Database design and models
演化图的数据库模型研究
我们处理时变图存储模型的有效实现。为此,我们提出了一种基于MongoDB的HiNode顶点中心模型的改进方法。这种方法除了具有固有的空间最优性外,还显著改善了全局查询执行时间,这是以实体为中心的方法中最具挑战性的查询类型。与基于Cassandra的实现相比,它不仅实现了显著的速度提升,而且还可以执行更昂贵的查询,因为它能够在更大程度上利用索引,并受益于数据库内查询处理。2012 ACM学科分类信息系统→数据库设计与模型
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信