{"title":"A 2.2-GHz 3.2-mW DTC-free Sampling ΔΣ Fractional-N PLL with -110 dBc/Hz In-band phase noise and -246dB FoM and -83dBc Reference Spur","authors":"J. Tao, C. Heng","doi":"10.23919/VLSIC.2019.8778000","DOIUrl":null,"url":null,"abstract":"This paper presents the first sampling ΔΣ fractional-N (frac-N) PLL without the digital-to-time converter (DTC), whose design is challenging and requires complex calibration. It employs a linear slope generator (LSG) to output a linear waveform and this linearization enables the sampling phase detector (SPD) to handle larger phase step from the phase interpolator (PI). This DTC-free 2.2-GHz PLL achieves in-band phase noise of-110 dBc/Hz, - 246-dB FOM and -83dBc reference spur while consuming only 3.2 mW power.","PeriodicalId":6707,"journal":{"name":"2019 Symposium on VLSI Circuits","volume":"36 2 1","pages":"C162-C163"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Symposium on VLSI Circuits","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/VLSIC.2019.8778000","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
This paper presents the first sampling ΔΣ fractional-N (frac-N) PLL without the digital-to-time converter (DTC), whose design is challenging and requires complex calibration. It employs a linear slope generator (LSG) to output a linear waveform and this linearization enables the sampling phase detector (SPD) to handle larger phase step from the phase interpolator (PI). This DTC-free 2.2-GHz PLL achieves in-band phase noise of-110 dBc/Hz, - 246-dB FOM and -83dBc reference spur while consuming only 3.2 mW power.