A sharp Remez type inequalities for the functions with asymmetric restrictions on the oldest derivative

Q4 Mathematics
V. Kofanov, A. V. Zhuravel
{"title":"A sharp Remez type inequalities for the functions with asymmetric restrictions on the oldest derivative","authors":"V. Kofanov, A. V. Zhuravel","doi":"10.15421/242304","DOIUrl":null,"url":null,"abstract":"For odd $r\\in \\mathbb{N}$; $\\alpha, \\beta >0$; $p\\in [1, \\infty]$; $\\delta \\in (0, 2 \\pi)$, any $2\\pi$-periodic function $x\\in L^r_{\\infty}(I_{2\\pi})$, $I_{2\\pi}:=[0, 2\\pi]$, and arbitrary measurable set $B \\subset I_{2\\pi},$ $\\mu B \\leqslant \\delta/\\lambda,$ where $\\lambda=$ $\\left({\\left\\|\\varphi_{r}^{\\alpha, \\beta}\\right\\|_{\\infty} \\left\\| {\\alpha^{-1}}{x_+^{(r)}} + {\\beta^{-1}}{x_-^{(r)}}\\right\\|_\\infty}{E^{-1}_0(x)_\\infty}\\right)^{1/r}$, we obtain sharp Remez type inequality $$E_0(x)_\\infty \\leqslant \\frac{\\|\\varphi_r^{\\alpha, \\beta}\\|_\\infty}{E_0(\\varphi_r^{\\alpha, \\beta})^{\\gamma}_{L_p(I_{2\\pi} \\setminus B_\\delta)}} \\left\\|x \\right\\|^{\\gamma}_{{L_p} \\left(I_{2\\pi} \\setminus B \\right)}\\left\\| {\\alpha^{-1}}{x_+^{(r)}} + {\\beta^{-1}}{x_-^{(r)}}\\right\\|_\\infty^{1-\\gamma},$$ where $\\gamma=\\frac{r}{r+1/p},$ $\\varphi_r^{\\alpha, \\beta}$ is non-symmetric ideal Euler spline of order $r$, $B_\\delta:= \\left[M- \\delta_2, M+ \\delta_1 \\right]$, $M$ is the point of local maximum of spline $\\varphi_r^{\\alpha, \\beta}$ and $\\delta_1 > 0$, $\\delta_2 > 0$ are such that $\\varphi_r^{\\alpha, \\beta}(M+ \\delta_1) = \\varphi_r^{\\alpha, \\beta}(M- \\delta_2), \\;\\; \\delta_1 + \\delta_2 = \\delta .$In particular, we prove the sharp inequality of Hörmander-Remez type for the norms of intermediate derivatives of the functions $x\\in L^r_{\\infty}(I_{2\\pi})$.","PeriodicalId":52827,"journal":{"name":"Researches in Mathematics","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Researches in Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15421/242304","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

For odd $r\in \mathbb{N}$; $\alpha, \beta >0$; $p\in [1, \infty]$; $\delta \in (0, 2 \pi)$, any $2\pi$-periodic function $x\in L^r_{\infty}(I_{2\pi})$, $I_{2\pi}:=[0, 2\pi]$, and arbitrary measurable set $B \subset I_{2\pi},$ $\mu B \leqslant \delta/\lambda,$ where $\lambda=$ $\left({\left\|\varphi_{r}^{\alpha, \beta}\right\|_{\infty} \left\| {\alpha^{-1}}{x_+^{(r)}} + {\beta^{-1}}{x_-^{(r)}}\right\|_\infty}{E^{-1}_0(x)_\infty}\right)^{1/r}$, we obtain sharp Remez type inequality $$E_0(x)_\infty \leqslant \frac{\|\varphi_r^{\alpha, \beta}\|_\infty}{E_0(\varphi_r^{\alpha, \beta})^{\gamma}_{L_p(I_{2\pi} \setminus B_\delta)}} \left\|x \right\|^{\gamma}_{{L_p} \left(I_{2\pi} \setminus B \right)}\left\| {\alpha^{-1}}{x_+^{(r)}} + {\beta^{-1}}{x_-^{(r)}}\right\|_\infty^{1-\gamma},$$ where $\gamma=\frac{r}{r+1/p},$ $\varphi_r^{\alpha, \beta}$ is non-symmetric ideal Euler spline of order $r$, $B_\delta:= \left[M- \delta_2, M+ \delta_1 \right]$, $M$ is the point of local maximum of spline $\varphi_r^{\alpha, \beta}$ and $\delta_1 > 0$, $\delta_2 > 0$ are such that $\varphi_r^{\alpha, \beta}(M+ \delta_1) = \varphi_r^{\alpha, \beta}(M- \delta_2), \;\; \delta_1 + \delta_2 = \delta .$In particular, we prove the sharp inequality of Hörmander-Remez type for the norms of intermediate derivatives of the functions $x\in L^r_{\infty}(I_{2\pi})$.
最老导数上具有非对称限制的函数的尖锐Remez型不等式
对于奇数 $r\in \mathbb{N}$; $\alpha, \beta >0$; $p\in [1, \infty]$; $\delta \in (0, 2 \pi)$,任何 $2\pi$-周期函数 $x\in L^r_{\infty}(I_{2\pi})$, $I_{2\pi}:=[0, 2\pi]$,和任意可测集 $B \subset I_{2\pi},$ $\mu B \leqslant \delta/\lambda,$ 在哪里 $\lambda=$ $\left({\left\|\varphi_{r}^{\alpha, \beta}\right\|_{\infty} \left\| {\alpha^{-1}}{x_+^{(r)}} + {\beta^{-1}}{x_-^{(r)}}\right\|_\infty}{E^{-1}_0(x)_\infty}\right)^{1/r}$,我们得到了尖锐的Remez型不等式 $$E_0(x)_\infty \leqslant \frac{\|\varphi_r^{\alpha, \beta}\|_\infty}{E_0(\varphi_r^{\alpha, \beta})^{\gamma}_{L_p(I_{2\pi} \setminus B_\delta)}} \left\|x \right\|^{\gamma}_{{L_p} \left(I_{2\pi} \setminus B \right)}\left\| {\alpha^{-1}}{x_+^{(r)}} + {\beta^{-1}}{x_-^{(r)}}\right\|_\infty^{1-\gamma},$$ 在哪里 $\gamma=\frac{r}{r+1/p},$ $\varphi_r^{\alpha, \beta}$ 非对称理想欧拉样条是有序的吗 $r$, $B_\delta:= \left[M- \delta_2, M+ \delta_1 \right]$, $M$ 是样条的局部最大值点吗 $\varphi_r^{\alpha, \beta}$ 和 $\delta_1 > 0$, $\delta_2 > 0$ 是这样的 $\varphi_r^{\alpha, \beta}(M+ \delta_1) = \varphi_r^{\alpha, \beta}(M- \delta_2), \;\; \delta_1 + \delta_2 = \delta .$特别地,我们证明了函数的中间导数的范数的Hörmander-Remez型尖锐不等式 $x\in L^r_{\infty}(I_{2\pi})$.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.50
自引率
0.00%
发文量
8
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信