G. Cattaneo, J. Levrat, Hengyu Li, V. Barth, L. Sicot, A. Richter, C. Colletti, F. Rametta, M. Izzi, M. Despeisse, C. Ballif
{"title":"Encapsulant Materials for High Reliable Bifacial Heterojunction Glass/Glass Photovoltaic Modules","authors":"G. Cattaneo, J. Levrat, Hengyu Li, V. Barth, L. Sicot, A. Richter, C. Colletti, F. Rametta, M. Izzi, M. Despeisse, C. Ballif","doi":"10.1109/PVSC45281.2020.9300702","DOIUrl":null,"url":null,"abstract":"The main objective of the European project AMPERE was the implementation of a 200 MWp fully automated glass/glass bifacial photovoltaic module pilot line based on silicon heterojunction technology. In this work, the results of the compatibility assessment of different commercial encapsulants with the new module design are presented. The study has been conducted by first testing the durability of each encapsulant and its interaction with the interconnected cells. Later the results have been transferred and validated for full size (72cells) modules by an extended and sequential stress testing sequence. The study showed that polyolefin elastomers are more compatible to heterojunction technology than other commercial encapsulants.","PeriodicalId":6773,"journal":{"name":"2020 47th IEEE Photovoltaic Specialists Conference (PVSC)","volume":"55 1","pages":"1056-1061"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 47th IEEE Photovoltaic Specialists Conference (PVSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PVSC45281.2020.9300702","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
The main objective of the European project AMPERE was the implementation of a 200 MWp fully automated glass/glass bifacial photovoltaic module pilot line based on silicon heterojunction technology. In this work, the results of the compatibility assessment of different commercial encapsulants with the new module design are presented. The study has been conducted by first testing the durability of each encapsulant and its interaction with the interconnected cells. Later the results have been transferred and validated for full size (72cells) modules by an extended and sequential stress testing sequence. The study showed that polyolefin elastomers are more compatible to heterojunction technology than other commercial encapsulants.