Pravin Hivare, Joshna Gadhavi, D. Bhatia, Sharad Gupta
{"title":"α‐Synuclein fibrils explore actin‐mediated macropinocytosis for cellular entry into model neuroblastoma neurons","authors":"Pravin Hivare, Joshna Gadhavi, D. Bhatia, Sharad Gupta","doi":"10.1111/tra.12859","DOIUrl":null,"url":null,"abstract":"Alpha‐synuclein (α‐Syn), an intrinsically disordered protein (IDP), is associated with neurodegenerative disorders, including Parkinson's disease (PD or other α‐synucleinopathies. Recent investigations propose the transmission of α‐Syn protein fibrils, in a prion‐like manner, by entering proximal cells to seed further fibrillization in PD. Despite the recent advances, the mechanisms by which extracellular protein aggregates internalize into the cells remain poorly understood. Using a simple cell‐based model of human neuroblastoma‐derived differentiated neurons, we present the cellular internalization of α‐Syn PFF to check cellular uptake and recycling kinetics along with the standard endocytic markers Transferrin (Tf) marking clathrin‐mediated endocytosis (CME) and Galectin3 (Gal3) marking clathrin‐independent endocytosis (CIE). Specific inhibition of endocytic pathways using chemical inhibitors reveals no significant involvement of CME, CIE and caveolae‐mediated endocytosis (CvME). A substantial reduction in cellular uptake was observed after perturbation of actin polymerization and treatment with macropinosomes inhibitor. Our results show that α‐Syn PFF mainly internalizes into the SH‐SY5Y cells and differentiated neurons via the macropinocytosis pathway. The elucidation of the molecular and cellular mechanism involved in the α‐Syn PFF internalization will help improve the understanding of α‐synucleinopathies including PD, and further design specific inhibitors for the same.","PeriodicalId":23207,"journal":{"name":"Traffic","volume":"1 1","pages":"391 - 410"},"PeriodicalIF":3.6000,"publicationDate":"2022-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Traffic","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/tra.12859","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 1
Abstract
Alpha‐synuclein (α‐Syn), an intrinsically disordered protein (IDP), is associated with neurodegenerative disorders, including Parkinson's disease (PD or other α‐synucleinopathies. Recent investigations propose the transmission of α‐Syn protein fibrils, in a prion‐like manner, by entering proximal cells to seed further fibrillization in PD. Despite the recent advances, the mechanisms by which extracellular protein aggregates internalize into the cells remain poorly understood. Using a simple cell‐based model of human neuroblastoma‐derived differentiated neurons, we present the cellular internalization of α‐Syn PFF to check cellular uptake and recycling kinetics along with the standard endocytic markers Transferrin (Tf) marking clathrin‐mediated endocytosis (CME) and Galectin3 (Gal3) marking clathrin‐independent endocytosis (CIE). Specific inhibition of endocytic pathways using chemical inhibitors reveals no significant involvement of CME, CIE and caveolae‐mediated endocytosis (CvME). A substantial reduction in cellular uptake was observed after perturbation of actin polymerization and treatment with macropinosomes inhibitor. Our results show that α‐Syn PFF mainly internalizes into the SH‐SY5Y cells and differentiated neurons via the macropinocytosis pathway. The elucidation of the molecular and cellular mechanism involved in the α‐Syn PFF internalization will help improve the understanding of α‐synucleinopathies including PD, and further design specific inhibitors for the same.
期刊介绍:
Traffic encourages and facilitates the publication of papers in any field relating to intracellular transport in health and disease. Traffic papers span disciplines such as developmental biology, neuroscience, innate and adaptive immunity, epithelial cell biology, intracellular pathogens and host-pathogen interactions, among others using any eukaryotic model system. Areas of particular interest include protein, nucleic acid and lipid traffic, molecular motors, intracellular pathogens, intracellular proteolysis, nuclear import and export, cytokinesis and the cell cycle, the interface between signaling and trafficking or localization, protein translocation, the cell biology of adaptive an innate immunity, organelle biogenesis, metabolism, cell polarity and organization, and organelle movement.
All aspects of the structural, molecular biology, biochemistry, genetics, morphology, intracellular signaling and relationship to hereditary or infectious diseases will be covered. Manuscripts must provide a clear conceptual or mechanistic advance. The editors will reject papers that require major changes, including addition of significant experimental data or other significant revision.
Traffic will consider manuscripts of any length, but encourages authors to limit their papers to 16 typeset pages or less.