Tohme: detecting curb ramps in google street view using crowdsourcing, computer vision, and machine learning

Kotaro Hara, J. Sun, Robert Moore, D. Jacobs, Jon E. Froehlich
{"title":"Tohme: detecting curb ramps in google street view using crowdsourcing, computer vision, and machine learning","authors":"Kotaro Hara, J. Sun, Robert Moore, D. Jacobs, Jon E. Froehlich","doi":"10.1145/2642918.2647403","DOIUrl":null,"url":null,"abstract":"Building on recent prior work that combines Google Street View (GSV) and crowdsourcing to remotely collect information on physical world accessibility, we present the first 'smart' system, Tohme, that combines machine learning, computer vision (CV), and custom crowd interfaces to find curb ramps remotely in GSV scenes. Tohme consists of two workflows, a human labeling pipeline and a CV pipeline with human verification, which are scheduled dynamically based on predicted performance. Using 1,086 GSV scenes (street intersections) from four North American cities and data from 403 crowd workers, we show that Tohme performs similarly in detecting curb ramps compared to a manual labeling approach alone (F- measure: 84% vs. 86% baseline) but at a 13% reduction in time cost. Our work contributes the first CV-based curb ramp detection system, a custom machine-learning based workflow controller, a validation of GSV as a viable curb ramp data source, and a detailed examination of why curb ramp detection is a hard problem along with steps forward.","PeriodicalId":20543,"journal":{"name":"Proceedings of the 27th annual ACM symposium on User interface software and technology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"101","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 27th annual ACM symposium on User interface software and technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2642918.2647403","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 101

Abstract

Building on recent prior work that combines Google Street View (GSV) and crowdsourcing to remotely collect information on physical world accessibility, we present the first 'smart' system, Tohme, that combines machine learning, computer vision (CV), and custom crowd interfaces to find curb ramps remotely in GSV scenes. Tohme consists of two workflows, a human labeling pipeline and a CV pipeline with human verification, which are scheduled dynamically based on predicted performance. Using 1,086 GSV scenes (street intersections) from four North American cities and data from 403 crowd workers, we show that Tohme performs similarly in detecting curb ramps compared to a manual labeling approach alone (F- measure: 84% vs. 86% baseline) but at a 13% reduction in time cost. Our work contributes the first CV-based curb ramp detection system, a custom machine-learning based workflow controller, a validation of GSV as a viable curb ramp data source, and a detailed examination of why curb ramp detection is a hard problem along with steps forward.
Tohme:在谷歌街景中使用众包、计算机视觉和机器学习来检测路边坡道
在最近结合谷歌街景(GSV)和众包来远程收集物理世界可达性信息的工作的基础上,我们提出了第一个“智能”系统Tohme,它结合了机器学习、计算机视觉(CV)和自定义人群界面,可以在GSV场景中远程找到路缘坡道。Tohme由两个工作流组成,一个人工标记管道和一个人工验证的CV管道,它们是根据预测的性能动态调度的。使用来自四个北美城市的1,086个GSV场景(街道路口)和403名人群工作人员的数据,我们发现Tohme在检测路边坡道方面的表现与单独的手动标记方法相似(F-测量值:84%对86%基线),但时间成本降低了13%。我们的工作贡献了第一个基于cv的路缘匝道检测系统,一个基于定制机器学习的工作流控制器,验证了GSV作为可行的路缘匝道数据源,并详细检查了为什么路缘匝道检测是一个难题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信