On Generalization and Computation of Tukey's Depth: Part I

Yiyuan She, S. Tang, Jingze Liu
{"title":"On Generalization and Computation of Tukey's Depth: Part I","authors":"Yiyuan She, S. Tang, Jingze Liu","doi":"10.52933/jdssv.v2i1.23","DOIUrl":null,"url":null,"abstract":"Tukey's depth offers a powerful tool for nonparametric inference and estimation, but also encounters serious computational and methodological difficulties in modern statistical data analysis. This paper studies how to generalize and compute Tukey-type depths in multi-dimensions. A general framework of influence-driven polished subspace depth, which emphasizes the importance of the underlying influence space and discrepancy measure, is introduced. The new matrix formulation enables us to utilize state-of-the-art optimization techniques to develop scalable algorithms with implementation ease and guaranteed fast convergence. In particular, half-space depth as well as regression depth can now be computed much faster than previously possible, with the support from extensive experiments. A companion paper is also offered to the reader in the same issue of this journal.","PeriodicalId":93459,"journal":{"name":"Journal of data science, statistics, and visualisation","volume":"80 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of data science, statistics, and visualisation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52933/jdssv.v2i1.23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Tukey's depth offers a powerful tool for nonparametric inference and estimation, but also encounters serious computational and methodological difficulties in modern statistical data analysis. This paper studies how to generalize and compute Tukey-type depths in multi-dimensions. A general framework of influence-driven polished subspace depth, which emphasizes the importance of the underlying influence space and discrepancy measure, is introduced. The new matrix formulation enables us to utilize state-of-the-art optimization techniques to develop scalable algorithms with implementation ease and guaranteed fast convergence. In particular, half-space depth as well as regression depth can now be computed much faster than previously possible, with the support from extensive experiments. A companion paper is also offered to the reader in the same issue of this journal.
土基深度的概化与计算:第一部分
Tukey的深度为非参数推理和估计提供了强大的工具,但在现代统计数据分析中也遇到了严重的计算和方法困难。本文研究了如何在多维情况下推广和计算tukey型深度。介绍了影响驱动抛光子空间深度的一般框架,强调了潜在影响空间和差异度量的重要性。新的矩阵公式使我们能够利用最先进的优化技术来开发可扩展的算法,实现简单,并保证快速收敛。特别是,在大量实验的支持下,现在可以比以前更快地计算半空间深度和回归深度。在同一期杂志中,还为读者提供了一篇配套论文。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信