{"title":"On Generalization and Computation of Tukey's Depth: Part I","authors":"Yiyuan She, S. Tang, Jingze Liu","doi":"10.52933/jdssv.v2i1.23","DOIUrl":null,"url":null,"abstract":"Tukey's depth offers a powerful tool for nonparametric inference and estimation, but also encounters serious computational and methodological difficulties in modern statistical data analysis. This paper studies how to generalize and compute Tukey-type depths in multi-dimensions. A general framework of influence-driven polished subspace depth, which emphasizes the importance of the underlying influence space and discrepancy measure, is introduced. The new matrix formulation enables us to utilize state-of-the-art optimization techniques to develop scalable algorithms with implementation ease and guaranteed fast convergence. In particular, half-space depth as well as regression depth can now be computed much faster than previously possible, with the support from extensive experiments. A companion paper is also offered to the reader in the same issue of this journal.","PeriodicalId":93459,"journal":{"name":"Journal of data science, statistics, and visualisation","volume":"80 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of data science, statistics, and visualisation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52933/jdssv.v2i1.23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Tukey's depth offers a powerful tool for nonparametric inference and estimation, but also encounters serious computational and methodological difficulties in modern statistical data analysis. This paper studies how to generalize and compute Tukey-type depths in multi-dimensions. A general framework of influence-driven polished subspace depth, which emphasizes the importance of the underlying influence space and discrepancy measure, is introduced. The new matrix formulation enables us to utilize state-of-the-art optimization techniques to develop scalable algorithms with implementation ease and guaranteed fast convergence. In particular, half-space depth as well as regression depth can now be computed much faster than previously possible, with the support from extensive experiments. A companion paper is also offered to the reader in the same issue of this journal.