Experimental study on the effect of additives on the heat transfer performance of spray cold plate

Q4 Engineering
Ruoxin Liu, R. Zhao, Yong-Le Nian, W. Cheng
{"title":"Experimental study on the effect of additives on the heat transfer performance of spray cold plate","authors":"Ruoxin Liu, R. Zhao, Yong-Le Nian, W. Cheng","doi":"10.52396/justc-2021-0152","DOIUrl":null,"url":null,"abstract":"The spray cold plate has a compact structure and high-efficiency heat exchange, which can meet the requirements of high heat flux dissipation of multiple heat sources, and is a reliable means to solve the heat dissipation of the next generation of chips. This paper proposes to use surfactants to enhance the heat transfer of the spray cold plate, and conduct a systematic experimental study on the heat transfer performance of the spray cold plate under different types and concentrations of additives. It was found that among the three surfactants, sodium dodecyl sulfate (SDS) can improve the heat transfer performance of the spray cold plate, and at the optimal concentration of 200ppm, the heat transfer coefficient of the spray cold plate was increased significantly by 19.8%. Both the n-octanol-distilled water and Tween 20-distilled water can reduce the heat transfer performance of the cold plate using multi nozzles. In addition, based on the experimental data, the dimensionless heat transfers correlations for the spray cold plate using additives were conducted, and the maximum errors of dimensionless correlations for using additives were 2.1%, 2.8%, and 5.4% respectively. This discovery provides a theoretical analysis and basis for the improvement of spray cold plates.","PeriodicalId":17548,"journal":{"name":"中国科学技术大学学报","volume":"39 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"中国科学技术大学学报","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.52396/justc-2021-0152","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

The spray cold plate has a compact structure and high-efficiency heat exchange, which can meet the requirements of high heat flux dissipation of multiple heat sources, and is a reliable means to solve the heat dissipation of the next generation of chips. This paper proposes to use surfactants to enhance the heat transfer of the spray cold plate, and conduct a systematic experimental study on the heat transfer performance of the spray cold plate under different types and concentrations of additives. It was found that among the three surfactants, sodium dodecyl sulfate (SDS) can improve the heat transfer performance of the spray cold plate, and at the optimal concentration of 200ppm, the heat transfer coefficient of the spray cold plate was increased significantly by 19.8%. Both the n-octanol-distilled water and Tween 20-distilled water can reduce the heat transfer performance of the cold plate using multi nozzles. In addition, based on the experimental data, the dimensionless heat transfers correlations for the spray cold plate using additives were conducted, and the maximum errors of dimensionless correlations for using additives were 2.1%, 2.8%, and 5.4% respectively. This discovery provides a theoretical analysis and basis for the improvement of spray cold plates.
添加剂对喷雾冷板传热性能影响的实验研究
喷淋冷板结构紧凑,热交换效率高,可满足多个热源高热流密度耗散的要求,是解决下一代芯片散热问题的可靠手段。本文提出使用表面活性剂增强喷雾冷板的传热,并对不同类型和浓度的添加剂对喷雾冷板的传热性能进行了系统的实验研究。结果发现,在三种表面活性剂中,十二烷基硫酸钠(SDS)能改善喷雾冷板的传热性能,在最佳浓度为200ppm时,喷雾冷板的传热系数显著提高19.8%。正辛醇蒸馏水和吐温20蒸馏水都可以降低多喷嘴冷板的换热性能。此外,基于实验数据,对添加添加剂的喷雾冷板进行了无因次传热关联,添加添加剂的无因次关联的最大误差分别为2.1%、2.8%和5.4%。这一发现为喷雾冷板的改进提供了理论分析和依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
中国科学技术大学学报
中国科学技术大学学报 Engineering-Mechanical Engineering
CiteScore
0.40
自引率
0.00%
发文量
5692
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信