Fixed points of the sum of divisors function on \({{\mathbb{F}}}_2[x]\)

Pub Date : 2022-12-30 DOI:10.3336/gm.57.2.04
L. Gallardo
{"title":"Fixed points of the sum of divisors function on \\({{\\mathbb{F}}}_2[x]\\)","authors":"L. Gallardo","doi":"10.3336/gm.57.2.04","DOIUrl":null,"url":null,"abstract":"We work on an analogue of a classical arithmetic problem over polynomials. More precisely,\nwe study the fixed points \\(F\\) of the sum of divisors function \\(\\sigma : {\\mathbb{F}}_2[x] \\mapsto {\\mathbb{F}}_2[x]\\)\n(defined mutatis mutandi like the usual sum of divisors over the integers)\n of the form \\(F := A^2 \\cdot S\\), \\(S\\) square-free, with \\(\\omega(S) \\leq 3\\), coprime with \\(A\\), for \\(A\\) even, of whatever degree, under some conditions. This gives a characterization of \\(5\\) of the \\(11\\) known fixed points of \\(\\sigma\\) in \\({\\mathbb{F}}_2[x]\\).","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3336/gm.57.2.04","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We work on an analogue of a classical arithmetic problem over polynomials. More precisely, we study the fixed points \(F\) of the sum of divisors function \(\sigma : {\mathbb{F}}_2[x] \mapsto {\mathbb{F}}_2[x]\) (defined mutatis mutandi like the usual sum of divisors over the integers) of the form \(F := A^2 \cdot S\), \(S\) square-free, with \(\omega(S) \leq 3\), coprime with \(A\), for \(A\) even, of whatever degree, under some conditions. This gives a characterization of \(5\) of the \(11\) known fixed points of \(\sigma\) in \({\mathbb{F}}_2[x]\).
分享
查看原文
不动点上的除数和函数 \({{\mathbb{F}}}_2[x]\)
我们研究一个关于多项式的经典算术问题的类比。更准确地说,我们研究不动点 \(F\) 除数和函数 \(\sigma : {\mathbb{F}}_2[x] \mapsto {\mathbb{F}}_2[x]\)(在定义上做了必要的修改,就像通常的整数上的除数之和)的形式 \(F := A^2 \cdot S\), \(S\) 无方形,有 \(\omega(S) \leq 3\),黄金时段 \(A\),为 \(A\) 即使在某种程度上,在某些条件下。这给出了一个特征 \(5\) 的 \(11\) 的已知不动点 \(\sigma\) 在 \({\mathbb{F}}_2[x]\).
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信