Authenticating Preference-Oriented Multiple Users Spatial Queries

Xiaoran Duan, Yong Wang, Juguang Chen, Junhao Zhang
{"title":"Authenticating Preference-Oriented Multiple Users Spatial Queries","authors":"Xiaoran Duan, Yong Wang, Juguang Chen, Junhao Zhang","doi":"10.1109/COMPSAC.2017.68","DOIUrl":null,"url":null,"abstract":"Location-based social networks (LBSNs) are attracting significant attentions, which make location-aware applications prosperous. We proposed the Multiple User-defined Spatial Query (MUSQ) in [1]. However, it is impractical that non-expert users provide exact vectors to denote their preferences in MUSQ. In this paper, we design a group users weight matrix generation algorithm to represent users' preferences conveniently. In addition, we propose a refinement method to improve the effectiveness of the query results. Further, considering the trust issue introduced by data outsourcing, an authenticated query processing framework is proposed. A set of experiments are conducted to show the effectiveness and scalability of our methods under various parameter settings.","PeriodicalId":6556,"journal":{"name":"2017 IEEE 41st Annual Computer Software and Applications Conference (COMPSAC)","volume":"15 1","pages":"602-607"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 41st Annual Computer Software and Applications Conference (COMPSAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COMPSAC.2017.68","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Location-based social networks (LBSNs) are attracting significant attentions, which make location-aware applications prosperous. We proposed the Multiple User-defined Spatial Query (MUSQ) in [1]. However, it is impractical that non-expert users provide exact vectors to denote their preferences in MUSQ. In this paper, we design a group users weight matrix generation algorithm to represent users' preferences conveniently. In addition, we propose a refinement method to improve the effectiveness of the query results. Further, considering the trust issue introduced by data outsourcing, an authenticated query processing framework is proposed. A set of experiments are conducted to show the effectiveness and scalability of our methods under various parameter settings.
验证面向偏好的多用户空间查询
基于位置的社交网络(LBSNs)是位置感知应用蓬勃发展的基础。我们在[1]中提出了多用户定义空间查询(Multiple User-defined Spatial Query, MUSQ)。然而,让非专业用户提供精确的向量来表示他们在MUSQ中的偏好是不切实际的。本文设计了一种群组用户权值矩阵生成算法,方便地表示用户的偏好。此外,我们还提出了一种改进方法来提高查询结果的有效性。进一步,考虑到数据外包带来的信任问题,提出了一种身份验证查询处理框架。通过一系列实验验证了该方法在不同参数设置下的有效性和可扩展性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信