Optimal Control of Geodesics in Riemannian Manifolds

Roland Rozsnyo, Klaus-Dieter Semmler
{"title":"Optimal Control of Geodesics in Riemannian Manifolds","authors":"Roland Rozsnyo,&nbsp;Klaus-Dieter Semmler","doi":"10.1002/anac.200410013","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we present a method based on an optimal control technique for numerical computations of geodesic paths between two fixed points of a Riemannian Manifold under the assumption of existence. In this method, the control variable is the tangent vector to the geodesic we are looking for. Defining a cost function corresponding to the requested control, we explain how to derive the optimal control algorithm by the use of an adjoint state method for the calculation of the gradient of that cost function. We then give a geometrical interpretation of the adjoint state. After having introduced the discrete optimal control algorithm, we show an application to wooden roof design. (© 2004 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim)</p>","PeriodicalId":100108,"journal":{"name":"Applied Numerical Analysis & Computational Mathematics","volume":"1 2","pages":"507-515"},"PeriodicalIF":0.0000,"publicationDate":"2004-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/anac.200410013","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Numerical Analysis & Computational Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anac.200410013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper, we present a method based on an optimal control technique for numerical computations of geodesic paths between two fixed points of a Riemannian Manifold under the assumption of existence. In this method, the control variable is the tangent vector to the geodesic we are looking for. Defining a cost function corresponding to the requested control, we explain how to derive the optimal control algorithm by the use of an adjoint state method for the calculation of the gradient of that cost function. We then give a geometrical interpretation of the adjoint state. After having introduced the discrete optimal control algorithm, we show an application to wooden roof design. (© 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)

黎曼流形测地线的最优控制
本文提出了一种基于最优控制技术的黎曼流形在存在假设下两点间测地线路径的数值计算方法。在这种方法中,控制变量是我们正在寻找的测地线的切向量。定义与所请求的控制相对应的成本函数,我们解释了如何通过使用伴随状态法来计算该成本函数的梯度来推导最优控制算法。然后给出伴随态的几何解释。在介绍离散最优控制算法的基础上,给出了离散最优控制算法在木屋顶设计中的应用。(©2004 WILEY-VCH Verlag GmbH &KGaA公司,Weinheim)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信