Discrepancy bounds for uniformly ergodic Markov chain quasi-Monte Carlo

J. Dick, Daniel Rudolf, Hou-Ying Zhu
{"title":"Discrepancy bounds for uniformly ergodic Markov chain quasi-Monte Carlo","authors":"J. Dick, Daniel Rudolf, Hou-Ying Zhu","doi":"10.1214/16-AAP1173","DOIUrl":null,"url":null,"abstract":"Markov chains can be used to generate samples whose distribution approximates a given target distribution. The quality of the samples of such Markov chains can be measured by the discrepancy between the empirical distribution of the samples and the target distribution. We prove upper bounds on this discrepancy under the assumption that the Markov chain is uniformly ergodic and the driver sequence is deterministic rather than independent $U(0,1)$ random variables. In particular, we show the existence of driver sequences for which the discrepancy of the Markov chain from the target distribution with respect to certain test sets converges with (almost) the usual Monte Carlo rate of $n^{-1/2}$.","PeriodicalId":8446,"journal":{"name":"arXiv: Computation","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2013-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/16-AAP1173","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

Markov chains can be used to generate samples whose distribution approximates a given target distribution. The quality of the samples of such Markov chains can be measured by the discrepancy between the empirical distribution of the samples and the target distribution. We prove upper bounds on this discrepancy under the assumption that the Markov chain is uniformly ergodic and the driver sequence is deterministic rather than independent $U(0,1)$ random variables. In particular, we show the existence of driver sequences for which the discrepancy of the Markov chain from the target distribution with respect to certain test sets converges with (almost) the usual Monte Carlo rate of $n^{-1/2}$.
一致遍历马尔可夫链拟蒙特卡罗的差异界
马尔可夫链可以用来生成其分布近似于给定目标分布的样本。这种马尔可夫链的样本质量可以通过样本的经验分布与目标分布之间的差异来衡量。在假设马尔可夫链是一致遍历的并且驱动序列是确定的而不是独立的$U(0,1)$随机变量的情况下,证明了这种差异的上界。特别地,我们证明了驱动序列的存在性,对于这些驱动序列,目标分布的马尔可夫链对某些测试集的差异(几乎)以通常的蒙特卡罗速率n^{-1/2}$收敛。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信