On the Over-Smoothing Problem of CNN Based Disparity Estimation

Chuangrong Chen, Xiaozhi Chen, Hui Cheng
{"title":"On the Over-Smoothing Problem of CNN Based Disparity Estimation","authors":"Chuangrong Chen, Xiaozhi Chen, Hui Cheng","doi":"10.1109/ICCV.2019.00909","DOIUrl":null,"url":null,"abstract":"Currently, most deep learning based disparity estimation methods have the problem of over-smoothing at boundaries, which is unfavorable for some applications such as point cloud segmentation, mapping, etc. To address this problem, we first analyze the potential causes and observe that the estimated disparity at edge boundary pixels usually follows multimodal distributions, causing over-smoothing estimation. Based on this observation, we propose a single-modal weighted average operation on the probability distribution during inference, which can alleviate the problem effectively. To integrate the constraint of this inference method into training stage, we further analyze the characteristics of different loss functions and found that using cross entropy with gaussian distribution consistently further improves the performance. For quantitative evaluation, we propose a novel metric that measures the disparity error in the local structure of edge boundaries. Experiments on various datasets using various networks show our method's effectiveness and general applicability. Code will be available at https://github.com/chenchr/otosp.","PeriodicalId":6728,"journal":{"name":"2019 IEEE/CVF International Conference on Computer Vision (ICCV)","volume":"1 1","pages":"8996-9004"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE/CVF International Conference on Computer Vision (ICCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2019.00909","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

Abstract

Currently, most deep learning based disparity estimation methods have the problem of over-smoothing at boundaries, which is unfavorable for some applications such as point cloud segmentation, mapping, etc. To address this problem, we first analyze the potential causes and observe that the estimated disparity at edge boundary pixels usually follows multimodal distributions, causing over-smoothing estimation. Based on this observation, we propose a single-modal weighted average operation on the probability distribution during inference, which can alleviate the problem effectively. To integrate the constraint of this inference method into training stage, we further analyze the characteristics of different loss functions and found that using cross entropy with gaussian distribution consistently further improves the performance. For quantitative evaluation, we propose a novel metric that measures the disparity error in the local structure of edge boundaries. Experiments on various datasets using various networks show our method's effectiveness and general applicability. Code will be available at https://github.com/chenchr/otosp.
基于CNN视差估计的过平滑问题研究
目前,大多数基于深度学习的视差估计方法都存在边界过度平滑的问题,这不利于点云分割、映射等应用。为了解决这个问题,我们首先分析了可能的原因,并观察到估计的边缘边界像素的视差通常遵循多模态分布,导致过度平滑估计。在此基础上,我们提出了在推理过程中对概率分布进行单模态加权平均运算,可以有效地缓解这一问题。为了将该推理方法的约束整合到训练阶段,我们进一步分析了不同损失函数的特征,发现一致地使用高斯分布的交叉熵进一步提高了性能。为了定量评价,我们提出了一种新的度量方法来测量边缘边界局部结构的视差误差。在不同数据集、不同网络上的实验表明了该方法的有效性和通用性。代码将在https://github.com/chenchr/otosp上提供。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信