The stellar thermal wind as a consequence of oblateness

Q1 Earth and Planetary Sciences
L. Matilsky
{"title":"The stellar thermal wind as a consequence of oblateness","authors":"L. Matilsky","doi":"10.1093/mnrasl/slad121","DOIUrl":null,"url":null,"abstract":"\n In many rotating fluids, the lowest-order force balance is between gravity, pressure, and rotational acceleration (‘GPR’ balance). Terrestrial GPR balance takes the form of geostrophy and hydrostasy, which together yield the terrestrial thermal wind equation. By contrast, stellar GPR balance is an oblateness equation, which determines the departures of the thermal variables from spherical symmetry; its curl yields the ‘stellar thermal wind equation.’ In this sense, the stellar thermal wind should be viewed not as a consequence of geostrophy, but of baroclinicity in the oblateness. Here we treat the full stellar oblateness, including the thermal wind, using pressure coordinates. We derive the generalised stellar thermal wind equation and identify the parameter regime for which it holds. In the case of the Sun, not considering the full oblateness has resulted in conflicting calculations of the theoretical aspherical temperature anomaly. We provide new calculation here and find that the baroclinic anomaly is ∼3–60 times smaller than the barotropic anomaly. Thus, the anomaly from the thermal wind may not be measurable helioseismically; but if measurement were possible, this would potentially yield a new way to bracket the depth of the solar tachocline.","PeriodicalId":18951,"journal":{"name":"Monthly Notices of the Royal Astronomical Society: Letters","volume":"28 9 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Monthly Notices of the Royal Astronomical Society: Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/mnrasl/slad121","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

In many rotating fluids, the lowest-order force balance is between gravity, pressure, and rotational acceleration (‘GPR’ balance). Terrestrial GPR balance takes the form of geostrophy and hydrostasy, which together yield the terrestrial thermal wind equation. By contrast, stellar GPR balance is an oblateness equation, which determines the departures of the thermal variables from spherical symmetry; its curl yields the ‘stellar thermal wind equation.’ In this sense, the stellar thermal wind should be viewed not as a consequence of geostrophy, but of baroclinicity in the oblateness. Here we treat the full stellar oblateness, including the thermal wind, using pressure coordinates. We derive the generalised stellar thermal wind equation and identify the parameter regime for which it holds. In the case of the Sun, not considering the full oblateness has resulted in conflicting calculations of the theoretical aspherical temperature anomaly. We provide new calculation here and find that the baroclinic anomaly is ∼3–60 times smaller than the barotropic anomaly. Thus, the anomaly from the thermal wind may not be measurable helioseismically; but if measurement were possible, this would potentially yield a new way to bracket the depth of the solar tachocline.
由于扁率而产生的恒星热风
在许多旋转流体中,最低阶的力平衡是重力、压力和旋转加速度之间的平衡(“GPR”平衡)。地面探地雷达平衡以地地形和静水作用的形式存在,它们共同产生地面热风方程。相比之下,恒星GPR平衡是一个扁率方程,它决定了热变量偏离球对称;它的旋度产生了“恒星热风方程”。从这个意义上说,恒星的热风不应该被看作是地形变化的结果,而是扁率的斜压性的结果。这里我们用压力坐标来处理包括热风在内的整个恒星扁率。我们推导了广义的恒星热风方程,并确定了它所适用的参数范围。在太阳的情况下,不考虑完全的扁率导致了理论非球面温度异常的相互矛盾的计算。我们在这里提供了新的计算,发现斜压异常比正压异常小~ 3-60倍。因此,来自热风的异常可能无法在日震上测量;但如果测量是可能的,这可能会产生一种新的方法来确定太阳速斜的深度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Monthly Notices of the Royal Astronomical Society: Letters
Monthly Notices of the Royal Astronomical Society: Letters Earth and Planetary Sciences-Space and Planetary Science
CiteScore
8.80
自引率
0.00%
发文量
136
期刊介绍: For papers that merit urgent publication, MNRAS Letters, the online section of Monthly Notices of the Royal Astronomical Society, publishes short, topical and significant research in all fields of astronomy. Letters should be self-contained and describe the results of an original study whose rapid publication might be expected to have a significant influence on the subsequent development of research in the associated subject area. The 5-page limit must be respected. Authors are required to state their reasons for seeking publication in the form of a Letter when submitting their manuscript.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信