Modeling and computation for unsteady blood flow and solute concentration in a constricted porous artery

IF 1 Q4 ENGINEERING, BIOMEDICAL
D. N. Riahi, S. Orizaga
{"title":"Modeling and computation for unsteady blood flow and solute concentration in a constricted porous artery","authors":"D. N. Riahi, S. Orizaga","doi":"10.3934/bioeng.2023007","DOIUrl":null,"url":null,"abstract":"We investigated a physical system for unsteady blood flow and solute transport in a section of a constricted porous artery. The aim of this study was to determine effects of hematocrit, stenosis, pulse oscillation, diffusion, convection and chemical reaction on the solute transport. The significance of this study was uncovering combined roles played by stenosis height, hematocrit, pulse oscillation period, reactive rate, blood speed, blood pressure force and radial and axial extent of the porous artery on the solute transported by the blood flow in the described porous artery. We used both analytical and computational methods to determine blood flow quantities and solute transport for different parametric values of the described physical system. We found that solute transport increases with increasing stenosis height, blood pulsation period, convection and blood pressure force. However, transportation of solute reduces with increasing hematocrit, chemical reactive rate and radial or axial distance.","PeriodicalId":45029,"journal":{"name":"AIMS Bioengineering","volume":"203 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIMS Bioengineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/bioeng.2023007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 1

Abstract

We investigated a physical system for unsteady blood flow and solute transport in a section of a constricted porous artery. The aim of this study was to determine effects of hematocrit, stenosis, pulse oscillation, diffusion, convection and chemical reaction on the solute transport. The significance of this study was uncovering combined roles played by stenosis height, hematocrit, pulse oscillation period, reactive rate, blood speed, blood pressure force and radial and axial extent of the porous artery on the solute transported by the blood flow in the described porous artery. We used both analytical and computational methods to determine blood flow quantities and solute transport for different parametric values of the described physical system. We found that solute transport increases with increasing stenosis height, blood pulsation period, convection and blood pressure force. However, transportation of solute reduces with increasing hematocrit, chemical reactive rate and radial or axial distance.
收缩多孔动脉不稳定血流和溶质浓度的建模与计算
我们研究了一个不稳定的血液流动和溶质运输的物理系统在一段收缩的多孔动脉。本研究的目的是确定红细胞压积、狭窄、脉冲振荡、扩散、对流和化学反应对溶质运输的影响。本研究的意义在于揭示了狭窄高度、血细胞比容、脉冲振荡周期、反应率、血流速度、血压力以及多孔动脉的径向和轴向范围对所述多孔动脉血流输送的溶质的综合作用。我们使用分析和计算方法来确定所描述的物理系统的不同参数值的血流量和溶质运输。我们发现溶质输运随狭窄高度、脉动周期、对流和血压力的增加而增加。然而,溶质的运输随着红细胞压积、化学反应速率和径向或轴向距离的增加而减少。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
AIMS Bioengineering
AIMS Bioengineering ENGINEERING, BIOMEDICAL-
自引率
0.00%
发文量
17
审稿时长
4 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信